12 research outputs found

    ATP Changes the Fluorescence Lifetime of Cyan Fluorescent Protein via an Interaction with His148

    Get PDF
    Recently, we described that ATP induces changes in YFP/CFP fluorescence intensities of Fluorescence Resonance Energy Transfer (FRET) sensors based on CFP-YFP. To get insight into this phenomenon, we employed fluorescence lifetime spectroscopy to analyze the influence of ATP on these fluorescent proteins in more detail. Using different donor and acceptor pairs we found that ATP only affected the CFP-YFP based versions. Subsequent analysis of purified monomers of the used proteins showed that ATP has a direct effect on the fluorescence lifetime properties of CFP. Since the fluorescence lifetime analysis of CFP is rather complicated by the existence of different lifetimes, we tested a variant of CFP, i.e. Cerulean, as a monomer and in our FRET constructs. Surprisingly, this CFP variant shows no ATP concentration dependent changes in the fluorescence lifetime. The most important difference between CFP and Cerulean is a histidine residue at position 148. Indeed, changing this histidine in CFP into an aspartic acid results in identical fluorescence properties as observed for the Cerulean fluorescent based FRET sensor. We therefore conclude that the changes in fluorescence lifetime of CFP are affected specifically by possible electrostatic interactions of the negative charge of ATP with the positively charged histidine at position 148. Clearly, further physicochemical characterization is needed to explain the sensitivity of CFP fluorescence properties to changes in environmental (i.e. ATP concentrations) conditions

    LPA Is a Chemorepellent for B16 Melanoma Cells: Action through the cAMP-Elevating LPA5 Receptor

    Get PDF
    Lysophosphatidic acid (LPA), a lipid mediator enriched in serum, stimulates cell migration, proliferation and other functions in many cell types. LPA acts on six known G protein-coupled receptors, termed LPA1–6, showing both overlapping and distinct signaling properties. Here we show that, unexpectedly, LPA and serum almost completely inhibit the transwell migration of B16 melanoma cells, with alkyl-LPA(18∢1) being 10-fold more potent than acyl-LPA(18∢1). The anti-migratory response to LPA is highly polarized and dependent on protein kinase A (PKA) but not Rho kinase activity; it is associated with a rapid increase in intracellular cAMP levels and PIP3 depletion from the plasma membrane. B16 cells express LPA2, LPA5 and LPA6 receptors. We show that LPA-induced chemorepulsion is mediated specifically by the alkyl-LPA-preferring LPA5 receptor (GPR92), which raises intracellular cAMP via a noncanonical pathway. Our results define LPA5 as an anti-migratory receptor and they implicate the cAMP-PKA pathway, along with reduced PIP3 signaling, as an effector of chemorepulsion in B16 melanoma cells

    Modular actin nano-architecture enables podosome protrusion and mechanosensing

    Get PDF
    Basement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing. The podosome protrusive core contains a central branched actin module encased by a linear actin module, each harboring specific actin interactors and actin isoforms. From the core, two actin modules radiate: ventral filaments bound by vinculin and connected to the plasma membrane and dorsal interpodosomal filaments crosslinked by myosin IIA. On stiff substrates, the actin modules mediate long-range substrate exploration, associated with degradative behavior. On compliant substrates, the vinculin-bound ventral actin filaments shorten, resulting in short-range connectivity and a focally protrusive, non-degradative state. Our findings redefine podosome nanoscale architecture and reveal a paradigm for how actin modularity drives invadosome mechanosensing in cells that breach tissue boundaries

    Modular actin nano-architecture enables podosome protrusion and mechanosensing

    No full text
    Contains fulltext : 212261.pdf (publisher's version ) (Open Access

    TRPM7, a novel regulator of actomyosin contractility and cell adhesion

    No full text
    Actomyosin contractility regulates various cell biological processes including cytokinesis, adhesion and migration. While in lower eukaryotes, Ξ±-kinases control actomyosin relaxation, a similar role for mammalian Ξ±-kinases has yet to be established. Here, we examined whether TRPM7, a cation channel fused to an Ξ±-kinase, can affect actomyosin function. We demonstrate that activation of TRPM7 by bradykinin leads to a Ca(2+)- and kinase-dependent interaction with the actomyosin cytoskeleton. Moreover, TRPM7 phosphorylates the myosin IIA heavy chain. Accordingly, low overexpression of TRPM7 increases intracellular Ca(2+) levels accompanied by cell spreading, adhesion and the formation of focal adhesions. Activation of TRPM7 induces the transformation of these focal adhesions into podosomes by a kinase-dependent mechanism, an effect that can be mimicked by pharmacological inhibition of myosin II. Collectively, our results demonstrate that regulation of cell adhesion by TRPM7 is the combined effect of kinase-dependent and -independent pathways on actomyosin contractility

    Bright cyan fluorescent protein variants identified by fluorescence lifetime screening

    No full text
    Optimization of autofluorescent proteins by intensity-based screening of bacteria does not necessarily identify the brightest variant for eukaryotes. We report a strategy to screen excited state lifetimes, which identified cyan fluorescent proteins with long fluorescence lifetimes (>3.7 ns) and high quantum yields (>0.8). One variant, mTurquoise, was 1.5-fold brighter than mCerulean in mammalian cells and decayed mono-exponentially, making it an excellent fluorescence resonance energy transfer (FRET) donor

    Spatiotemporal Regulation of Chloride Intracellular Channel Protein CLIC4 by RhoA

    No full text
    Chloride intracellular channel (CLIC) 4 is a soluble protein structurally related to omega-type glutathione-S-transferases (GSTs) and implicated in various biological processes, ranging from chloride channel formation to vascular tubulogenesis. However, its function(s) and regulation remain unclear. Here, we show that cytosolic CLIC4 undergoes rapid but transient translocation to discrete domains at the plasma membrane upon stimulation of G13-coupled, RhoA-activating receptors, such as those for lysophosphatidic acid, thrombin, and sphingosine-1-phosphate. CLIC4 recruitment is strictly dependent on GΞ±13-mediated RhoA activation and F-actin integrity, but not on Rho kinase activity; it is constitutively induced upon enforced RhoA-GTP accumulation. Membrane-targeted CLIC4 does not seem to enter the plasma membrane or modulate transmembrane chloride currents. Mutational analysis reveals that CLIC4 translocation depends on at least six conserved residues, including reactive Cys35, whose equivalents are critical for the enzymatic function of GSTs. We conclude that CLIC4 is regulated by RhoA to be targeted to the plasma membrane, where it may function not as an inducible chloride channel but rather by displaying Cys-dependent transferase activity toward a yet unknown substrate

    siFLIM: single-image frequency-domain FLIM provides fast and photon-efficient lifetime data

    No full text
    We developed single-image fluorescence lifetime imaging microscopy (siFLIM), a method for acquiring quantitative lifetime images from a single exposure. siFLIM takes advantage of a new generation of dedicated cameras that simultaneously record two 180 degrees -phase-shifted images, and it allows for video-rate lifetime imaging with minimal phototoxicity and bleaching. siFLIM is also inherently immune to artifacts stemming from rapid cellular movements and signal transients

    REV7 counteracts DNA double-strand break resection and affects PARP inhibition

    No full text
    Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells
    corecore