15 research outputs found

    The Adwords Problem with Strict Capacity Constraints

    Get PDF
    We study an online assignment problem where the offline servers have capacities, and the objective is to obtain a maximum-weight assignment of requests that arrive online. The weight of edges incident to any server can be at most the server capacity. Our problem is related to the adwords problem, where the assignment to a server is allowed to exceed its capacity. In many applications, however, server capacities are strict and partially-served requests are of no use, motivating the problem we study. While no deterministic algorithm can be competitive in general for this problem, we give an algorithm with competitive ratio that depends on the ratio of maximum weight of any edge to the capacity of the server it is incident to. If this ratio is 1/2, our algorithm is tight. Further, we give a randomized algorithm that is 6-competitive in expectation for the general problem. Most previous work on the problem and its variants assumes that the edge weights are much smaller than server capacities. Our guarantee, in contrast, does not require any assumptions about job weights. We also give improved lower bounds for both deterministic and randomized algorithms. For the special case of parallel servers, we show that a load-balancing algorithm is tight and near-optimal

    Accelerated Motion Correction with Deep Generative Diffusion Models

    Full text link
    Magnetic Resonance Imaging (MRI) is a powerful medical imaging modality, but unfortunately suffers from long scan times which, aside from increasing operational costs, can lead to image artifacts due to patient motion. Motion during the acquisition leads to inconsistencies in measured data that manifest as blurring and ghosting if unaccounted for in the image reconstruction process. Various deep learning based reconstruction techniques have been proposed which decrease scan time by reducing the number of measurements needed for a high fidelity reconstructed image. Additionally, deep learning has been used to correct motion using end-to-end techniques. This, however, increases susceptibility to distribution shifts at test time (sampling pattern, motion level). In this work we propose a framework for jointly reconstructing highly sub-sampled MRI data while estimating patient motion using diffusion based generative models. Our method does not make specific assumptions on the sampling trajectory or motion pattern at training time and thus can be flexibly applied to various types of measurement models and patient motion. We demonstrate our framework on retrospectively accelerated 2D brain MRI corrupted by rigid motion

    Conditional Score-Based Reconstructions for Multi-contrast MRI

    Full text link
    Magnetic resonance imaging (MRI) exam protocols consist of multiple contrast-weighted images of the same anatomy to emphasize different tissue properties. Due to the long acquisition times required to collect fully sampled k-space measurements, it is common to only collect a fraction of k-space for some, or all, of the scans and subsequently solve an inverse problem for each contrast to recover the desired image from sub-sampled measurements. Recently, there has been a push to further accelerate MRI exams using data-driven priors, and generative models in particular, to regularize the ill-posed inverse problem of image reconstruction. These methods have shown promising improvements over classical methods. However, many of the approaches neglect the multi-contrast nature of clinical MRI exams and treat each scan as an independent reconstruction. In this work we show that by learning a joint Bayesian prior over multi-contrast data with a score-based generative model we are able to leverage the underlying structure between multi-contrast images and thus improve image reconstruction fidelity over generative models that only reconstruct images of a single contrast
    corecore