10 research outputs found

    Role of structure of C-terminated 4H-SiC(000) surface in growth of graphene layers - transmission electron microscopy and density functional theory studies

    Full text link
    Principal structural defects in graphene layers, synthesized on a carbon-terminated face, i.e. the SiC(000) face of a 4H-SiC substrate, are investigated using microscopic methods. Results of high-resolution transmission electron microscopy (HRTEM) reveal their atomic arrangement. Mechanism of such defects creation, directly related to the underlying crystallographic structure of the SiC substrate, is elucidated. The connection between the 4H-SiC(000) surface morphology, including the presence of the single atomic steps, the sequences of atomic steps, and also the macrosteps, and the corresponding emergence of planar defective structure (discontinuities of carbon layers and wrinkles) is revealed. It is shown that disappearance of the multistep island leads to the creation of wrinkles in the graphene layers. The density functional theory (DFT) calculation results show that the diffusion of both silicon and carbon atoms is possible on a Si-terminated SiC surface at a high temperature close to 1600{\deg}C. The creation of buffer layer at the Si-terminated surface effectively blocks horizontal diffusion, preventing growth of thick graphene layer at this face. At the carbon terminated SiC surface, the buffer layer is absent leaving space for effective horizontal diffusion of both silicon and carbon atoms. DFT results show that excess carbon atoms converts a topmost carbon layer to sp2 bonded configuration, liberating Si atoms in barrierless process. The silicon atoms escape through the channels created at the bending layers defects, while the carbon atoms are incorporated into the growing graphene layers. These results explain growth of thick graphene underneath existing graphene cover and also the creation of the principal defects at the C-terminated SiC(0001) surfaceComment: 20 pages,11 figure

    A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect

    Full text link
    Electric field, uniform within the slab, emerging due to Fermi level pinning at its both sides is analyzed using DFT simulations of the SiC surface slabs of different thickness. It is shown that for thicker slab the field is nonuniform and this fact is related to the surface state charge. Using the electron density and potential profiles it is proved that for high precision simulations it is necessary to take into account enough number of the Si-C layers. We show that using 12 diatomic layers leads to satisfactory results. It is also demonstrated that the change of the opposite side slab termination, both by different type of atoms or by their location, can be used to adjust electric field within the slab, creating a tool for simulation of surface properties, depending on the doping in the bulk of semiconductor. Using these simulations it was found that, depending on the electric field, the energy of the surface states changes in a different way than energy of the bulk states. This criterion can be used to distinguish Shockley and Tamm surface states. The electronic properties, i.e. energy and type of surface states of the three clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC(0001ˉ000 \bar{1}) are analyzed and compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table

    Processed Fruiting Bodies of Lentinus edodes as a Source of Biologically Active Polysaccharides

    No full text
    Water soluble polysaccharides (WSP) were isolated from Lentinus edodes fruiting bodies. The mushrooms were previously subjected to various processing techniques which included blanching, boiling, and fermenting with lactic acid bacteria. Therefore, the impact of processing on the content and biological activities of WSP was established. Non-processed fruiting bodies contained 10.70 ± 0.09 mg/g fw. Boiling caused ~12% decrease in the amount of WSP, while blanched and fermented mushrooms showed ~6% decline. Fourier transform infrared spectroscopy analysis (FTIR) confirmed the presence of β-glycosidic links, whereas due to size exclusion chromatography 216 kDa and 11 kDa molecules were detected. WSP exhibited antioxidant potential in FRAP (ferric ion reducing antioxidant power) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays. Cytotoxic properties were determined on MCF-7 and T47D human breast cell lines using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) test. Both biological activities decreased as the result of boiling and fermenting

    Preparation, Characterization of Granulated Sulfur Fertilizers and Their Effects on a Sandy Soils

    No full text
    There is a potential for using sulfur waste in agriculture. The main objective of this study was to design a granular fertilizer based on waste elemental sulfur. Humic acids and halloysite were used to improve the properties and their influence on soil properties. This is the first report on the use of proposed materials for fertilizer production. The following granular fertilizers were prepared (the percentage share of component weight is given in brackets): fertilizer A (waste sulfur (95%) + halloysite (5%)), fertilizer B (waste sulfur (81%) + halloysite (5%) + humic acids (14%)), fertilizer C (waste sulfur (50%) + halloysite (50%)) and fertilizer D (waste sulfur (46%) + halloysite (46%) + humic acids (8%)). Basic properties of the obtained granulates were determined. Furthermore, the effect of the addition of the prepared fertilizers on soil pH, electrolytic conductivity, and sulfate content was examined in a 90-day incubation experiment. Enrichment with humic acids and the higher amount of halloysite increased the fertilizer properties (especially the share of larger granules and bulk density). In addition, it stabilized soil pH and increased the sulfur content (extracted with 0.01 mol·L−1 CaCl2 and Mehlich 3) in the soil
    corecore