4 research outputs found

    Effects of the Histone Deacetylase Inhibitor Valproic Acid on Human Pericytes In Vitro

    Get PDF
    Microvascular pericytes are of key importance in neoformation of blood vessels, in stabilization of newly formed vessels as well as maintenance of angiostasis in resting tissues. Furthermore, pericytes are capable of differentiating into pro-fibrotic collagen type I producing fibroblasts. The present study investigates the effects of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on pericyte proliferation, cell viability, migration and differentiation. The results show that HDAC inhibition through exposure of pericytes to VPA in vitro causes the inhibition of pericyte proliferation and migration with no effect on cell viability. Pericyte exposure to the potent HDAC inhibitor Trichostatin A caused similar effects on pericyte proliferation, migration and cell viability. HDAC inhibition also inhibited pericyte differentiation into collagen type I producing fibroblasts. Given the importance of pericytes in blood vessel biology a qPCR array focusing on the expression of mRNAs coding for proteins that regulate angiogenesis was performed. The results showed that HDAC inhibition promoted transcription of genes involved in vessel stabilization/maturation in human microvascular pericytes. The present in vitro study demonstrates that VPA influences several aspects of microvascular pericyte biology and suggests an alternative mechanism by which HDAC inhibition affects blood vessels. The results raise the possibility that HDAC inhibition inhibits angiogenesis partly through promoting a pericyte phenotype associated with stabilization/maturation of blood vessels

    The Role of Microvascular Pericytes in the Generation of Pro-fibrotic Connective Tissue Cells : Investigations in vitro and in Reactive Tissues in vivo

    No full text
    Pericytes are cells of mesenchymal origin located on the abluminal side, juxtapositioned to the endothelial cells in capillaries, venules and small arterioles. They are important for maintaining vessel integrity in resting tissues as well as the formation and stabilization of new vessels. They have been suggested to function as mesenchymal stem cells thereby contributing to the connective tissue cell population in reactive tissues. In this thesis the role of pericytes as progenitors for fibroblasts was further defined both in vitro and in vivo. In the first study connective tissue cells of mesenchymal origin were investigated based on their marker expression and relation to the microvasculature. The expression of alpha smooth muscle actin (α-SMA), a marker for myofibroblasts, was compared to the expression of certain integrins in three reactive conditions in human tissues. There was a co-localization of α-SMA and α1β1 integrins, indicating that α1 integrin was important for acquiring the α-SMA myofibroblast phenotype. To further investigate this, two animal models for carcinoma growth and wound healing using α1 deficient mice were employed. Reduction/lack of α-SMA expressing myofibroblasts substantiated or findings in human tissues, strengthening the hypothesis that the α1 integrin is important for the differentiation of α-SMA expressing myofibroblasts. In study two the effects of the HDAC inhibitor valproic acid (VPA) on pericyte function in vitro was investigated. This revealed that VPA had an inhibitory effect on pericyte proliferation, migration and differentiation into collagen type I producing fibroblasts. In addition qPCR array studies on angiogenesis related gene expression identified an up-regulation of genes involved in vessel stabilization in VPA treated pericytes. This suggests that VPA promotes a pericyte phenotype favoring vessel stability. In study three the differentiation from early mesenchymal stem cell like pericyte to fully differentiated fibroblast was further defined by flow cytometry marker analysis. By isolating pericytes from human placenta with a phenotype resembling the in vivo phenotype the differentiation pathway could be defined in five consecutive steps. The five steps were defined by their marker expression and their ability to give rise to the other cell populations in the differentiation lineage, as well as their slow cycling characteristics. A better understanding of how connective tissue cells are derived in fibrotic conditions may be beneficial in trying to modulate the outcome of the healing process towards optimal tissue regeneration with minimal fibrosis

    Discovery and Characterization of the Potent and Highly Selective 1,7-Naphthyridine-Based Inhibitors BAY-091 and BAY-297 of the Kinase PIP4K2A

    No full text
    PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer
    corecore