459 research outputs found

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Measurement of prompt D+D^+ and Ds+D^+_{s} production in pPbp\mathrm{Pb} collisions at sNN=5.02 \sqrt {s_{\mathrm{NN}}}=5.02\,TeV

    No full text
    International audienceThe production of prompt D+D^+ and Ds+D^+_{s} mesons is studied in proton-lead collisions at a centre-of-mass energy of sNN=5.02 \sqrt {s_{\mathrm{NN}}}=5.02\,TeV. The data sample corresponding to an integrated luminosity of (1.58±0.02)nb−1(1.58\pm0.02)\mathrm{nb}^{-1} is collected by the LHCb experiment at the LHC. The differential production cross-sections are measured using D+D^+ and Ds+D^+_{s} candidates with transverse momentum in the range of 0<pT<14 GeV/c0<p_{\mathrm{T}} <14\,\mathrm{GeV}/c and rapidities in the ranges of 1.5<y∗<4.01.5<y^*<4.0 and −5.0<y∗<−2.5-5.0<y^*<-2.5 in the nucleon-nucleon centre-of-mass system. For both particles, the nuclear modification factor and the forward-backward production ratio are determined. These results are compared with theoretical models that include initial-state nuclear effects. In addition, measurements of the cross-section ratios between D+D^+, Ds+D^+_{s} and D0D^0 mesons are presented, providing a baseline for studying the charm hadronization in lead-lead collisions at LHC energies

    Measurement of prompt D+D^+ and Ds+D^+_{s} production in pPbp\mathrm{Pb} collisions at sNN=5.02 \sqrt {s_{\mathrm{NN}}}=5.02\,TeV

    No full text
    International audienceThe production of prompt D+D^+ and Ds+D^+_{s} mesons is studied in proton-lead collisions at a centre-of-mass energy of sNN=5.02 \sqrt {s_{\mathrm{NN}}}=5.02\,TeV. The data sample corresponding to an integrated luminosity of (1.58±0.02)nb−1(1.58\pm0.02)\mathrm{nb}^{-1} is collected by the LHCb experiment at the LHC. The differential production cross-sections are measured using D+D^+ and Ds+D^+_{s} candidates with transverse momentum in the range of 0<pT<14 GeV/c0<p_{\mathrm{T}} <14\,\mathrm{GeV}/c and rapidities in the ranges of 1.5<y∗<4.01.5<y^*<4.0 and −5.0<y∗<−2.5-5.0<y^*<-2.5 in the nucleon-nucleon centre-of-mass system. For both particles, the nuclear modification factor and the forward-backward production ratio are determined. These results are compared with theoretical models that include initial-state nuclear effects. In addition, measurements of the cross-section ratios between D+D^+, Ds+D^+_{s} and D0D^0 mesons are presented, providing a baseline for studying the charm hadronization in lead-lead collisions at LHC energies

    Improved measurement of CPCP violation parameters in Bs0→J/ψK+K−B_s^0\to J/\psi K^+K^- decays in the vicinity of the ϕ(1020)\phi(1020) resonance

    No full text
    The decay-time-dependent CPCP asymmetry in Bs0→J/ψ(→Ό+Ό−)K+K−B_s^0\to J/\psi(\to \mu^+\mu^-) K^+ K^- decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6fb−16 {\rm fb}^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B_s^0 signal decays with an invariant K+K−K^+ K^- mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B_s^0-B‟s0\overline{B}_s^0 system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B_s^0 and B0B^0 meson decay widths, Γs−Γd\Gamma_s-\Gamma_d. The values obtained are ϕs=−0.039±0.022±0.006\phi_s = -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024 ps−1\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ~{\rm ps}^{-1} and Γs−Γd=−0.056 − 0.0015 + 0.0013±0.0014 ps−1\Gamma_s-\Gamma_d = -0.056^{\:+\:0.0013}_{\:-\:0.0015} \pm 0.0014 ~{\rm ps}^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+K−K^+K^- system and shows no evidence for polarization dependence.The decay-time-dependent CPCP asymmetry in Bs0→J/ψ(→Ό+Ό−)K+K−B^0_s\to J/\psi(\to \mu^{+}\mu^{-}) K^{+}K^{-} decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6 fb−1fb^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B^{0}_{s} signal decays with an invariant K+K−K^{+}K^{-} mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B^0_s-Bˉs0\bar{B}^0_s system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B^0_s and B0B^0 meson decay widths, Γs−Γd\Gamma_s-\Gamma_d. The values obtained are ϕs= −0.039±0.022±0.006\phi_s = \ -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ps−1^{-1} and Γs−Γd=−0.0056−0.0015+0.0013±0.0014\Gamma_s-\Gamma_d = -0.0056 ^{+ 0.0013}_{-0.0015} \pm 0.0014 ps−1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+K−K^{+}K^{-} system and shows no evidence for polarization dependence

    Measurement of Ξc+\Xi_{c}^{+} production in ppPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV at LHCb

    No full text
    International audienceA study of prompt Ξc+\Xi_{c}^{+} production in proton-lead collisions is performed with the LHCb experiment at a centre-of-mass energy per nucleon pair of 8.16 TeV in 2016 in ppPb and Pbpp collisions with an estimated integrated luminosity of approximately 12.5 and 17.4 nb−1^{-1}, respectively. The Ξc+\Xi_{c}^{+} production cross-section, as well as the Ξc+\Xi_{c}^{+} to Λc+\Lambda_{c}^{+} production cross-section ratio, are measured as a function of the transverse momentum and rapidity and compared to latest theory predictions. The forward-backward asymmetry is also measured as a function of the Ξc+\Xi_{c}^{+} transverse momentum

    Evidence for the decays B0→Dˉ(∗)0ϕB^{0}\rightarrow\bar{D}^{(*)0}\phi and updated measurements of the branching fractions of the Bs0→Dˉ(∗)0ϕB^{0}_{s}\rightarrow\bar{D}^{(*)0}\phi decays

    No full text
    International audienceEvidence for the decays B0→Dˉ0ϕB^{0}\rightarrow\bar{D}^{0}\phi and B0→Dˉ∗0ϕB^{0} \rightarrow \bar{D}^{*0}\phi is reported with a significance of 3.6 σ\,\sigma and 4.3 σ\,\sigma, respectively. The analysis employs pppp collision data at centre-of-mass energies s=7\sqrt{s}=7, 8 and 13 TeV collected by the LHCb detector and corresponding to an integrated luminosity of 9 fb−1\rm{fb}^{-1}. The branching fractions are measured to be B(B0→Dˉ0ϕ)=(7.7±2.1±0.7±0.7)×10−7\mathcal{B}(B^{0}\rightarrow\bar{D}^{0}\phi) = (7.7\pm2.1\pm0.7\pm0.7)\times10^{-7}, B(B0→Dˉ∗0ϕ)=(2.2±0.5±0.2±0.2)×10−6\mathcal{B}(B^{0} \rightarrow \bar{D}^{*0}\phi)=(2.2\pm0.5\pm0.2\pm0.2)\times10^{-6}. In these results, the first uncertainties are statistical, the second systematic, and the third is related to the branching fraction of the B0→Dˉ0K+K−B^{0}\rightarrow\bar{D}^{0}K^{+}K^{-} decay, used for normalisation. By combining the branching fractions of the decays B0→Dˉ(∗)0ϕB^{0}\rightarrow\bar{D}^{(*)0}\phi and B0→Dˉ(∗)0ωB^{0}\rightarrow\bar{D}^{(*)0}\omega, the ω\omega-ϕ\phi mixing angle ÎŽ\delta is constrained to be tan⁥2ÎŽ=(3.6±0.7±0.4)×10−3\tan^2\delta = (3.6\pm0.7\pm0.4)\times10^{-3}, where the first uncertainty is statistical and the second systematic. An updated measurement of the branching fractions of the Bs0→Dˉ(∗)0ϕB^{0}_{s} \rightarrow \bar{D}^{(*)0}\phi decays, which can be used to determine the CKM angle Îł\gamma, leads to B(Bs0→Dˉ0ϕ)=(2.30±0.10±0.11±0.20)×10−5\mathcal{B}(B^{0}_{s}\rightarrow\bar{D}^{0}\phi)=(2.30\pm0.10 \pm 0.11\pm0.20)\times10^{-5}, B(Bs0→Dˉ∗0ϕ)=(3.17±0.16±0.17±0.27)×10−5\mathcal{B}(B^{0}_{s}\rightarrow\bar{D}^{*0}\phi) =(3.17\pm0.16 \pm 0.17 \pm 0.27)\times10^{-5}

    Study of the Bose-Einstein correlations of same-sign pions in proton-lead collisions

    No full text
    International audienceCorrelations of same-sign charged particles are analysed using proton-lead collision data collected by the LHCb experiment at a nucleon-nucleon centre-of-mass energy of 5.02 TeV, corresponding to an integrated luminosity of 1.06 nb-1. Bose-Einstein correlations are observed in the form of an enhancement of pair production for same-sign charged pions with a small four-momentum difference squared. The dependence of the correlation radius and the intercept parameter on the reconstructed charged-particle multiplicity is investigated. The measured correlation radii scale linearly with the cube root of the reconstructed charged-particle multiplicity, being compatible with predictions of hydrodynamic models on the collision system evolution
    • 

    corecore