852 research outputs found

    Competing valence bond and symmetry breaking Mott states of spin-3/2 fermions on a honeycomb lattice

    Get PDF
    We investigate magnetic properties of strongly interacting four component spin-3/2 ultracold fermionic atoms in the Mott insulator limit with one particle per site in an optical lattice with honeycomb symmetry. In this limit, atomic tunneling is virtual, and only the atomic spins can exchange. We find a competition between symmetry breaking and liquid like disordered phases. Particularly interesting are valence bond states with bond centered magnetizations, situated between the ferromagnetic and conventional valence bond phases. In the framework of a mean-field theory, we calculate the phase diagram and identify an experimentally relevant parameter region where a homogeneous SU(4) symmetric Affleck-Kennedy-Lieb-Tasaki-like valence bond state is present

    Analysis of plate glass columns: The influence of fixing and the coupling parameter

    Get PDF
    The design methods of the load bearing glass columns developed extremely in the last years. Numerous glass researchers have been trying to optimize the glass structures in terms of cost-effectiveness and safety. The authors carried out several laboratory experiments to analyze the key factors of the glass column design. Factors are investigated in the present article for example the influence of the fixing at the end of the glass columns, which essentially modifies the load bearing capacity of structures. The efficiency of the gluing of the interlayer foil (the coupling parameter) was analyzed based on the individual laboratory experiments

    Application of UV-Induced Unscheduled DNA-Synthesis Measurements in Human Genotoxicological Risk Assessment

    Get PDF
    Cancer development is a long-term, multistep process with a complex interplay between genes and environment. The magnitude of environmental effects depends on the presence or absence of genetic susceptibility of the subjects to certain cancer types. Molecular epidemiological studies in cancer have proved, that besides target cell genetic instability, the presence of triggering environmental exposure is critical in cancer development [Albertini & Hayes 1997, Newby &Howard 2005]. The biomarker responses, exposure character and the route of exposure of different environmental factors (chemicals, physical agents and biological agents) are also important in causing tumors especially in the cases of occupational cancer [Ward 1995]. The EPA Guidelines for carcinogen Risk Assessment [EPA 2005] is based on the mode of action of chemicals, such as interaction with DNA, cytotoxicity, or binding to the receptors modifying signal pathways. There are several natural compounds – so called chemopreventive agents- which are able to modify the genotoxic or mutagenic response (Ames 1983) in different organisms. These vitamins, antioxidants, phytochemicals, micro nutrients are available on the market without knowing their mode of action. Mutagenesis caused by environmental chemicals or physical agents can be prevented by protection of the cell’s DNA replication, increasing the repair capacity or delaying cell replication to allow enough time to make a complete repair of damaged cells. Antioxidants are able to protect the cells from oxidative stress, and stimulate the phase I reactions including oxidation, reduction, and hydrolysis of xenobiotics by the monoxigenase detoxicating key enzymes, such as CYP450 [Xu et al.1996, Poulsen &Loft]. These changes increase the polarity of these molecules and help to conjugate them in phase II to glucuronic acid, acetic acid and sulfuric acid which are the physiological ways to eliminate active metabolites that are genotoxic to the target cells. The best studied crucial early event in carcinogenesis is chromosomal aberration, including microsatellite instability, abnormal number of chromosomes (aneuploidy), gene amplification or the loss of heterozygosity of tumor suppressor genes. By reducing chromosomal mutation via chemoprevention, the cell may be able to survive the genotoxic effects without any permanent damage, or it is able to go through the physiological pathway of apoptosis, without mutation occurring in the P53 gene [Lowe&Lin 2000]

    Modifications of physical properties of coconut oil and anhydrous milk fat as a result of blending

    Get PDF
    The role of fats in food technology is mainly to develop the desired consistency. The simplest way to reach this goal is the blending of different fats. The aim of our work was to study the solidification and melting properties of blends of coconut oil and anhydrous milk fat. Pure fats and their 25–75%, 50–50%, and 75–25% blends were investigated. Melting profile and isotherm crystallization were measured by pNMR. Non-isotherm melting and solidification were detected by differential scanning calorimetry (DSC). Possible applications of the blends were established. Results show that AMF and coconut oil has limited miscibility, which is dependent on the temperature. Below 22 °C AMF is the softening component, above 22 °C the effect is inverse. Coconut oil accelerates solidification of AMF, however, basic crystal forms of AMF remained

    Comparison of soil erosion dynamics under extensive and intensive cultivation based on basic soil parameters

    Get PDF
    The conservation of soil and its elemental feature, t he soil fertility has not just national and agricultural business interest, since the fertile soil is an elemental part of the material turnover in the environment. The soil erosion can reach huge spatial e xtensions and starts with the most valuable part: the upper, fertile layer. So, its research is crucial for our future survival. Our studied area can be found in GerĂ©zdpuszta at the KoppĂĄny -valley of Hungary, which is a sensitive erosion area. We sampled the upper 30 cm of soil layer in every 10 meters that resulted 32-32 point samples on the arable and on the grassland, respectively. One sample was taken under the forest as r eference. We analyzed the basic soil parameters: CaCO 3 , pH, AL-P 2 O 5 , AL-K 2 O, Kuron’s higroscopicity, SOM and the particle size di stribution was determined. Besides, we examined the connection between the given results from laboratory soil analyses and the Munsell-type and Google Earth satellite image colors. O ur results show the erosion dynamic on our sample slope, and the main differences in basic soil paramet ers between different intensities. The main indicator of soil erosion dynamic were the CaCO 3 , the SOM, AL-P 2 O 5 and the particle size distribution, where the SOM and CaCO 3 were correlate with the Munsell and Google Earth col or also

    Synthesis and Characterization of Nanostructured Oxide Layers on Ti-Nb-Zr-Ta and Ti-Nb-Zr-Fe Biomedical Alloys

    Get PDF
    Nanoporous/nanotubular complex oxide layers were developed on high-fraction ÎČ phase quaternary Ti-Nb-Zr-Ta and Ti-Nb-Zr-Fe promising biomedical alloys with a low elasticity modulus. Surface modification was achieved by electrochemical anodization aimed at the synthesis of the morphology of the nanostructures, which exhibited inner diameters of 15–100 nm. SEM, EDS, XRD, and current evolution analyses were performed for the characterization of the oxide layers. By optimizing the process parameters of electrochemical anodization, complex oxide layers with pore/tube openings of 18–92 nm on Ti-10Nb-10Zr-5Ta, 19–89 nm on Ti-20Nb-20Zr-4Ta, and 17–72 nm on Ti-29.3Nb-13.6Zr-1.9Fe alloys were synthesized using 1 M H3PO4 + 0.5 wt% HF aqueous electrolytes and 0.5 wt% NH4F + 2 wt% H20 + ethylene glycol organic electrolytes

    The effects of ozone on immune function.

    Get PDF
    A review of the literature reveals that ozone (O3) exposure can either suppress or enhance immune responsiveness. These disparate effects elicited by O3 exposure depend, in large part, on the experimental design used, the immune parameters examined as well as the animal species studied. Despite the apparent contradictions, a general pattern of response to O3 exposure can be recognized. Most studies indicate that continuous O3 exposure leads to an early (days 0-3) impairment of immune responsiveness followed, with continued exposures, by a form of adaptation to O3 that results in a re-establishment of the immune response. The effects of O3 exposure on the response to antigenic stimulation also depend on the time at which O3 exposure occurred. Whereas O3 exposure prior to immunization is without effect on the response to antigen, O3 exposure subsequent to immunization suppresses the response to antigen. Although most studies have focused on immune responses in the lung, numerous investigators have provided functional and anatomical evidence to support the hypothesis that O3 exposure can have profound effects on systemic immunity
    • 

    corecore