5 research outputs found

    Analysis of Failures and Risks in Deep Learning Model Converters: A Case Study in the ONNX Ecosystem

    No full text
    Many software engineers develop, fine-tune, and deploy deep learning (DL) models. They use DL models in a variety of development frameworks and deploy to a range of runtime environments. In this diverse ecosystem, engineers use DL model converters to move models from frameworks to runtime environments. Conversion errors compromise model quality and disrupt deployment. However, failure modes and patterns of DL model converters are unknown. This knowledge gap adds engineering risk in DL interoperability technologies. In this paper, we conduct the first failure analysis on DL model converters. Specifically, we characterize failures in model converters associated with ONNX (Open Neural Network eXchange). We analyze failures in the ONNX converters for two major DL frameworks, PyTorch and TensorFlow. The symptoms, causes, and locations of failures are reported for N=200 issues. We also evaluate why models fail by converting 5,149 models, both real-world and synthetically generated instances. Through the course of our testing, we find 11 defects (5 new) across torch.onnx, tf2onnx, and the ONNXRuntime. We evaluated two hypotheses about the relationship between model operators and converter failures, falsifying one and with equivocal results on the other. We describe and note weaknesses in the current testing strategies for model converters. Our results motivate future research on making DL software simpler to maintain, extend, and validate

    Reusing Deep Learning Models: Challenges and Directions in Software Engineering

    No full text
    Deep neural networks (DNNs) achieve state-of-the-art performance in many areas, including computer vision, system configuration, and question-answering. However, DNNs are expensive to develop, both in intellectual effort (e.g., devising new architectures) and computational costs (e.g., training). Re-using DNNs is a promising direction to amortize costs within a company and across the computing industry. As with any new technology, however, there are many challenges in re-using DNNs. These challenges include both missing technical capabilities and missing engineering practices. This vision paper describes challenges in current approaches to DNN re-use. We summarize studies of re-use failures across the spectrum of re-use techniques, including conceptual (e.g., re-using based on a research paper), adaptation (e.g., re-using by building on an existing implementation), and deployment (e.g., direct re-use on a new device). We outline possible advances that would improve each kind of re-use

    PTMTorrent: A Dataset for Mining Open-source Pre-trained Model Packages

    No full text
    Due to the cost of developing and training deep learning models from scratch, machine learning engineers have begun to reuse pre-trained models (PTMs) and fine-tune them for downstream tasks. PTM registries known as “model hubs” support engineers in distributing and reusing deep learning models. PTM packages include pre-trained weights, documentation, model architectures, datasets, and metadata. Mining the information in PTM packages will enable the discovery of engineering phenomena and tools to support software engineers. However, accessing this information is difficult — there are many PTM registries, and both the registries and the individual packages may have rate limiting for accessing the data. We present an open-source dataset, PTMTorrent, to facilitate the evaluation and understanding of PTM packages. This paper describes the creation, structure, usage, and limitations of the dataset. The dataset includes a snapshot of 5 model hubs and a total of 15,913 PTM packages. These packages are represented in a uniform data schema for cross-hub mining. We describe prior uses of this data and suggest research opportunities for mining using our dataset

    An Automated Approach for Improving The Inference Latency and Energy Efficiency of Pretrained CNNs by Removing Irrelevant Pixels with Focused Convolutions

    No full text
    Computer vision often uses highly accurate Convolutional Neural Networks (CNNs), but these deep learning models are associated with ever-increasing energy and computation requirements. Producing more energy-efficient CNNs often requires model training which can be cost-prohibitive. We propose a novel, automated method to make a pretrained CNN more energy-efficient without re-training. Given a pretrained CNN, we insert a threshold layer that filters activations from the preceding layers to identify regions of the image that are irrelevant, i.e. can be ignored by the following layers while maintaining accuracy. Our modified focused convolution operation saves inference latency (by up to 25%) and energy costs (by up to 22%) on various popular pretrained CNNs, with little to no loss in accuracy

    An automated approach for improving the inference latency and energy efficiency of pretrained CNNs by removing irrelevant pixels with focused convolutions

    No full text
    Computer vision often uses highly accurate Convolutional Neural Networks (CNNs), but these deep learning models are associated with ever-increasing energy and computation requirements. Producing more energy-efficient CNNs often requires model training which can be cost-prohibitive. We propose a novel, automated method to make a pretrained CNN more energy-efficient without re-training. Given a pretrained CNN, we insert a threshold layer that filters activations from the preceding layers to identify regions of the image that are irrelevant, i.e. can be ignored by the following layers while maintaining accuracy. Our modified focused convolution operation saves inference latency (by up to 25%) and energy costs (by up to 22%) on various popular pretrained CNNs, with little to no loss in accuracy.</p
    corecore