5 research outputs found

    Dynamics of Hot QCD Matter -- Current Status and Developments

    Full text link
    The discovery and characterization of hot and dense QCD matter, known as Quark Gluon Plasma (QGP), remains the most international collaborative effort and synergy between theorists and experimentalists in modern nuclear physics to date. The experimentalists around the world not only collect an unprecedented amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these data to unravel the mystery of this new phase of matter that filled a few microseconds old universe, just after the Big Bang. In the meantime, advancements in theoretical works and computing capability extend our wisdom about the hot-dense QCD matter and its dynamics through mathematical equations. The exchange of ideas between experimentalists and theoreticians is crucial for the progress of our knowledge. The motivation of this first conference named "HOT QCD Matter 2022" is to bring the community together to have a discourse on this topic. In this article, there are 36 sections discussing various topics in the field of relativistic heavy-ion collisions and related phenomena that cover a snapshot of the current experimental observations and theoretical progress. This article begins with the theoretical overview of relativistic spin-hydrodynamics in the presence of the external magnetic field, followed by the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized by IIT Goa & Goa University, Goa, Indi

    State estimation in a hydraulically actuated log crane using Unscented Kalman Filter

    No full text
    Abstract Multibody system dynamics approaches together with state estimation methods can reduce the need for a large number of sensors, especially in the digital twin of working mobile machinery. To demonstrate this, a hydraulically actuated machine was modeled using the double-step semi-recursive multibody formulation and lumped fluid theory in terms of system independent states. Next, because of the high non-linearity of the modeled system and with respect to the reported performance degradation of the Extended Kalman Filters (EKF), which are mostly related to the linearization procedure of this filter, the Unscented Kalman Filter (UKF) was implemented to achieve high accuracy and performance. The methodology of the proposed approaches was applied to a mobile log crane model PATU 655. The implementation of the proposed estimation algorithms is demonstrated with three different multibody based simulation models: the synthetic real system producing the artificial measurements, the simulation model, and the estimation model. Encoders and pressure sensors, installed on the synthetic real system, provided synthetic sensor measurement data. To mimic real-world conditions, the estimation and simulation models used in the processing of the state estimation algorithm were assumed to have errors in the initial conditions and force model. The proposed UKF was applied to the estimation model with the synthetic sensor measurement data. The minimum percent normalized root mean square errors in the associated measured and unmeasured states of case example were 0.11% and 1.86%, respectively. The UKF using the multibody system dynamics formulations is able to estimate the case example states despite 15% and 60% errors in mass and inertial properties of bodies and Payload, respectively, confirming the accuracy and performance of the algorithm

    Experimental investigation into the state estimation of a forestry crane using the unscented Kalman filter and a multiphysics model

    No full text
    Abstract To increase productivity, reduce energy use, and minimize unplanned maintenance, manufacturers of heavy machinery must instrument their products. As explained in the literature, state and parameter estimators can successfully integrate machine sensor signals with simulation results from computational models. This leads to comparable or improved observations even when fewer sensors are being used. This study introduces a state observer based on the unscented Kalman filter for the coupled mechanical and hydraulic systems. The resulting reality-driven simulation procedure is applied to a hydraulically actuated forestry crane that has been instrumented to provide the necessary sensor information. This study analyzes the performance of state observer in four different scenarios and recommends an optimal sensor configuration for the application. Estimation accuracy of observer in the simulation of the mechanics and hydraulics components is evaluated using the percent normalized root mean square error (PN-RMSE) and 95% confidence interval

    Physics-based digital twins merging with machines:cases of mobile log crane and rotating machine

    No full text
    Abstract Real-world products and physics-based simulations are becoming interconnected. In particular, real-time capable dynamic simulation has made it possible for simulation models to run in parallel and simultaneously with operating machinery. This capability combined with state observer techniques such as Kalman filtering have enabled the synchronization between simulation and the real world. State estimator techniques can be applied to estimate unmeasured quantities, also referred as virtual sensing, or to enhance the quality of measured signals. Although synchronized models could be used in a number of ways, value creation and business model development are currently defining the most practical and beneficial use cases from a business perspective. The research reported here reveals the communication and collaboration methods that lead to economically relevant technology solutions. Two case examples are given that demonstrate the proposed methodology. The work benefited from the broad perspective of researchers from different backgrounds and the joint effort to drive the technology development towards business relevant cases

    Abstracts of Scientifica 2022

    No full text
    This book contains the abstracts of the papers presented at Scientifica 2022, Organized by the Sancheti Institute College of Physiotherapy, Pune, Maharashtra, India, held on 12–13 March 2022. This conference helps bring researchers together across the globe on one platform to help benefit the young researchers. There were six invited talks from different fields of Physiotherapy and seven panel discussions including over thirty speakers across the globe which made the conference interesting due to the diversity of topics covered during the conference. Conference Title:  Scientifica 2022Conference Date: 12–13 March 2022Conference Location: Sancheti Institute College of PhysiotherapyConference Organizer: Sancheti Institute College of Physiotherapy, Pune, Maharashtra, Indi
    corecore