6 research outputs found

    Ciprofloxacin-resistant Salmonella enterica Typhimurium and Choleraesuis from Pigs to Humans, Taiwan

    Get PDF
    We evaluated the disk susceptibility data of 671 nontyphoid Salmonella isolates collected from different parts of Taiwan from March 2001 to August 2001 and 1,261 nontyphoid Salmonella isolates from the National Taiwan University Hospital from 1996 to 2001. Overall, ciprofloxacn resistance was found in 2.7% (18/671) of all nontyphoid Salmonella isolates, in 1.4% (5/347) of Salmonella enterica serotype Typhimurium and in 7.5% (8/107) in S. enterica serotype Choleraesuis nationwide. MICs of six newer fluoroquinolones were determined for the following isolates: 37 isolates of ciprofloxacin-resistant (human) S. enterica Typhimurium (N = 26) and Choleraesuis (N = 11), 10 isolates of ciprofloxacin-susceptible (MIC <1 μg/mL) (human) isolates of these two serotypes, and 15 swine isolates from S. enterica Choleraesuis (N = 13) and Typhmurium (N = 2) with reduced susceptibility to ciprofloxacin (MIC >0.12 μg/mL). Sequence analysis of the gryA, gyrB, parC, parE, and acrR genes, ciprofloxacin accumulation; and genotypes generated by pulsed-field gel electrophoresis with three restriction enzymes (SpeI, XbaI, and BlnI) were performed. All 26 S. enterica Typhimurium isolates from humans and pigs belonged to genotype I. For S. enterica Choleraesuis isolates, 91% (10/11) of human isolates and 54% (7/13) of swine isolates belonged to genotype B. These two genotypes isolates from humans all exhibited a high-level of resistance to ciprofloxacin (MIC 16–64 μg/mL). They had two-base substitutions in the gyrA gene at codons 83 (Ser83Phe) and 87 (Asp87Gly or Asp87Asn) and in the parC gene at codon 80 (Ser80Arg, Ser80Ile, or Ser84Lys). Our investigation documented that not only did these two S. enterica isolates have a high prevalence of ciprofloxacin resistance nationwide but also that some closely related ciprofloxacin-resistant strains are disseminated from pigs to humans

    Extended-Spectrum β-Lactamases and Plasmid-Mediated AmpC Enzymes among Clinical Isolates of Escherichia coli and Klebsiella pneumoniae from Seven Medical Centers in Taiwan

    No full text
    Production of extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes was investigated among 291 Escherichia coli and 282 Klebsiella pneumoniae isolates that showed decreased susceptibilities to extended-spectrum cephalosporins from seven Taiwanese medical centers. CTX-M-type and SHV-type enzymes were the most prevalent extended-spectrum β-lactamases. CMY-2-like and DHA-1-like β-lactamases were the most prevalent AmpC-type enzymes

    Antifungal Susceptibilities of Clinical Isolates of Candida Species, Cryptococcus neoformans, and Aspergillus Species from Taiwan: Surveillance of Multicenter Antimicrobial Resistance in Taiwan Program Data from 2003

    No full text
    The susceptibilities of nonduplicate isolates to six antifungal agents were determined for 391 blood isolates of seven Candida species, 70 clinical isolates (from blood or cerebrospinal fluid) of Cryptococcus neoformans, and 96 clinical isolates of four Aspergillus species, which were collected in seven different hospitals in Taiwan (as part of the 2003 program of the study group Surveillance of Multicenter Antimicrobial Resistance in Taiwan). All isolates of Candida species other than C. glabrata and C. krusei were susceptible to fluconazole. Among the 59 C. glabrata isolates, 16 (27%) were not susceptible to fluconazole, and all were dose-dependently susceptible or resistant to itraconazole. For three (5.1%) C. glabrata isolates, voriconazole MICs were 2 to 4 μg/ml, and for all other Candida species isolates, voriconazole MICs were ≤0.5 μg/ml. The proportions of isolates for which amphotericin B MICs were ≥2 μg/ml were 100% (3 isolates) for C. krusei, 11% (23 of 207 isolates) for Candida albicans, 3.0% (2 of 67 isolates) for Candida tropicalis, 20% (12 of 59 isolates) for C. glabrata, and 0% for both Candida parapsilosis and Candida lusitaniae. For three (4%) Cryptococcus neoformans isolates, fluconazole MICs were ≥16 μg/ml, and two (3%) isolates were not inhibited by 1 μg of amphotericin B/ml. For four (4.2%) of the Aspergillus isolates, itraconazole MICs were 8 μg/ml. Aspergillus flavus was less susceptible to amphotericin B, with the MICs at which 50% (1 μg/ml) and 90% (2 μg/ml) nsrsid417869\delrsid7301351 of isolates were inhibited being twofold greater than those for Aspergillus fumigatus and Aspergillus niger. All Aspergillus isolates were inhibited by ≤1 μg of voriconazole/ml, including isolates with increased resistance to amphotericin B and itraconazole. This study revealed the emergence in Taiwan of decreased susceptibilities of Candida species to amphotericin B and of C. neoformans to fluconazole and amphotericin B. Voriconazole was the most potent agent against the fungal isolates tested, including fluconazole- and amphotericin B-nonsusceptible strains

    Telithromycin- and Fluoroquinolone-Resistant Streptococcus pneumoniae in Taiwan with High Prevalence of Resistance to Macrolides and β-Lactams: SMART Program 2001 Data

    No full text
    There is a high prevalence of β-lactam- and macrolide-resistant Streptococcus pneumoniae in Taiwan. To understand the in vitro susceptibilities of recent isolates of S. pneumoniae to fluoroquinolones and telithromycin (which is not available in Taiwan), the MICs of 23 antimicrobial agents for 936 clinical isolates of S. pneumoniae isolated from different parts of Taiwan from 2000 to 2001 were determined by the agar dilution method. Overall, 72% of isolates were not susceptible to penicillin (with 61% being intermediate and 11% being resistant) and 92% were resistant to erythromycin. Telithromycin MICs were ≥1 μg/ml for 16% of the isolates, and for 99% of these isolates the MICs of all macrolides tested were ≥256 μg/ml; all of these isolates had the constitutive macrolide-lincosamide-streptogramin B phenotype. Eighty-eight percent of the isolates were resistant to three or more classes of drugs. The ciprofloxacin MICs were ≥4 μg/ml for six (0.6%) isolates from five patients collected in 2000 and 2001, and the levofloxacin MICs were ≥8 μg/ml for five of these isolates. Seven isolates for which ciprofloxacin MICs were ≥4 μg/ml, including one isolate recovered in 1999, belonged to three serotypes (serotype 19F, five isolates; serotype 23A, one isolate; and serotype 23B, one isolate). The isolates from the six patients for which ciprofloxacin MICs were ≥4 μg/ml had different pulsed-field gel electrophoresis profiles and random amplified polymorphic DNA patterns, indicating that no clonal dissemination occurred over this time period. Despite the increased rate of fluoroquinolone use, the proportion of pneumococcal isolates for which ciprofloxacin MICs were elevated (≥4 μg/ml) remained low. However, the occurrence of telithromycin resistance is impressive and raises concerns for the future

    Telithromycin and Quinupristin-Dalfopristin Resistance in Clinical Isolates of Streptococcus pyogenes: SMART Program 2001 Data

    No full text
    This study evaluated the current status of antimicrobial resistance in clinical isolates of Streptococcus pyogenes in Taiwan as part of the SMART (Surveillance from Multicenter Antimicrobial Resistance in Taiwan) program. In 2001, 419 different isolates of S. pyogenes, including 275 from respiratory secretions, 87 from wound pus, and 31 from blood, were collected from nine hospitals in different parts of Taiwan. MICs of 23 antimicrobial agents were determined at a central location by the agar dilution method. All of the isolates were susceptible to penicillin (MIC at which 90% of the isolates were inhibited [MIC(90)], ≤0.03 μg/ml), cefotaxime (MIC(90), ≤0.03 μg/ml), cefepime (MIC(90), 0.06 μg/ml), meropenem (MIC(90), ≤0.03 μg/ml), moxifloxacin (MIC(90), 0.25 μg/ml), vancomycin (MIC(90), 0.5 μg/ml), and linezolid (MIC(90), 1 μg/ml). Overall, 78% of isolates were not susceptible to erythromycin (54% were intermediate, and 24% were resistant), and 5% were not susceptible to clindamycin. Of the 101 erythromycin-resistant isolates, 80.2% exhibited the M phenotype (mefA gene positive), 18.9% exhibited the cMLS (constitutive resistance to macrolides-lincosamides-streptogramin B [MLS]) phenotype (ermB gene positive), and 1% exhibited the iMLS (inducible resistance to MLS) phenotype (ermB gene positive). Fluoroquinolones (sitafloxacin > moxifloxacin > ciprofloxacin = levofloxacin = gatifloxacin > gemifloxacin) demonstrated potent activity against nearly all of the isolates of S. pyogenes tested. Thirty-two isolates (8%) were not susceptible to quinupristin-dalfopristin. Seventeen percent of isolates had telithromycin MICs of ≥1 μg/ml, and all of these isolates exhibited erythromycin MICs of ≥32 μg/ml. The high prevalence of resistance to telithromycin (which is not available in Taiwan) limits its potential use in the treatment of S. pyogenes infections, particularly in areas with high rates of macrolide resistance
    corecore