12 research outputs found

    Integration of AI and mechanistic modeling in generative adversarial networks for stochastic inverse problems

    Full text link
    The problem of finding distributions of input parameters for deterministic mechanistic models to match distributions of model outputs to stochastic observations, i.e., the "Stochastic Inverse Problem" (SIP), encompasses a range of common tasks across a variety of scientific disciplines. Here, we demonstrate that SIP could be reformulated as a constrained optimization problem and adapted for applications in intervention studies to simultaneously infer model input parameters for two sets of observations, under control conditions and under an intervention. In the constrained optimization problem, the solution of SIP is enforced to accommodate the prior knowledge on the model input parameters and to produce outputs consistent with given observations by minimizing the divergence between the inferred distribution of input parameters and the prior. Unlike in standard SIP, the prior incorporates not only knowledge about model input parameters for objects in each set, but also information on the joint distribution or the deterministic map between the model input parameters in two sets of observations. To solve standard and intervention SIP, we employed conditional generative adversarial networks (GANs) and designed novel GANs that incorporate multiple generators and discriminators and have structures that reflect the underlying constrained optimization problems. This reformulation allows us to build computationally scalable solutions to tackle complex model input parameter inference scenarios, which appear routinely in physics, biophysics, economics and other areas, and which currently could not be handled with existing methods

    Two heads are better than one: current landscape of integrating QSP and machine learning

    Get PDF
    Quantitative systems pharmacology (QSP) modeling is applied to address essential questions in drug development, such as the mechanism of action of a therapeutic agent and the progression of disease. Meanwhile, machine learning (ML) approaches also contribute to answering these questions via the analysis of multi-layer ‘omics’ data such as gene expression, proteomics, metabolomics, and high-throughput imaging. Furthermore, ML approaches can also be applied to aspects of QSP modeling. Both approaches are powerful tools and there is considerable interest in integrating QSP modeling and ML. So far, a few successful implementations have been carried out from which we have learned about how each approach can overcome unique limitations of the other. The QSP ? ML working group of the International Society of Pharmacometrics QSP Special Interest Group was convened in September, 2019 to identify and begin realizing new opportunities in QSP and ML integration. The working group, which comprises 21 members representing 18 academic and industry organizations, has identified four categories of current research activity which will be described herein together with case studies of applications to drug development decision making. The working group also concluded that the integration of QSP and ML is still in its early stages of moving from evaluating available technical tools to building case studies. This paper reports on this fast-moving field and serves as a foundation for future codification of best practices

    Parikh - Do in-silico models provide improved risk prediction of drug-induced Torsades de Pointes?

    No full text
    A talk given by Jaimit Parikh at the CiPA in-silico modelling satellite meeting to Cardiac Physiome Workshop, Toronto, November 2017

    Theoretical Investigation of Intra- and Inter-cellular Spatiotemporal Calcium Patterns in Microcirculation

    Get PDF
    Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease

    Novel Two-Step Classifier for Torsades de Pointes Risk Stratification from Direct Features

    No full text
    While pre-clinical Torsades de Pointes (TdP) risk classifiers had initially been based on drug-induced block of hERG potassium channels, it is now well established that improved risk prediction can be achieved by considering block of non-hERG ion channels. The current multi-channel TdP classifiers can be categorized into two classes. First, the classifiers that take as input the values of drug-induced block of ion channels (direct features). Second, the classifiers that are built on features extracted from output of the drug-induced multi-channel blockage simulations in the in-silico models (derived features). The classifiers built on derived features have thus far not consistently provided increased prediction accuracies, and hence casts doubt on the value of such approaches given the cost of including biophysical detail. Here, we propose a new two-step method for TdP risk classification, referred to as Multi-Channel Blockage at Early After Depolarization (MCB@EAD). In the first step, we classified the compound that produced insufficient hERG block as non-torsadogenic. In the second step, the role of non-hERG channels to modulate TdP risk are considered by constructing classifiers based on direct or derived features at critical hERG block concentrations that generates EADs in the computational cardiac cell models. MCB@EAD provides comparable or superior TdP risk classification of the drugs from the direct features in tests against published methods. TdP risk for the drugs highly correlated to the propensity to generate EADs in the model. However, the derived features of the biophysical models did not improve the predictive capability for TdP risk assessment

    Novel and flexible parameter estimation methods for data-consistent inversion in mechanistic modelling

    No full text
    Predictions for physical systems often rely upon knowledge acquired from ensembles of entities, e.g. ensembles of cells in biological sciences. For qualitative and quantitative analysis, these ensembles are simulated with parametric families of mechanistic models (MMs). Two classes of methodologies, based on Bayesian inference and population of models, currently prevail in parameter estimation for physical systems. However, in Bayesian analysis, uninformative priors for MM parameters introduce undesirable bias. Here, we propose how to infer parameters within the framework of stochastic inverse problems (SIPs), also termed data-consistent inversion, wherein the prior targets only uncertainties that arise due to MM non-invertibility. To demonstrate, we introduce new methods to solve SIPs based on rejection sampling, Markov chain Monte Carlo, and generative adversarial networks (GANs). In addition, to overcome limitations of SIPs, we reformulate SIPs based on constrained optimization and present a novel GAN to solve the constrained optimization problem

    Two heads are better than one: current landscape of integrating QSP and machine learning

    Get PDF
    Abstract Quantitative systems pharmacology (QSP) modeling is applied to address essential questions in drug development, such as the mechanism of action of a therapeutic agent and the progression of disease. Meanwhile, machine learning (ML) approaches also contribute to answering these questions via the analysis of multi-layer ‘omics’ data such as gene expression, proteomics, metabolomics, and high-throughput imaging. Furthermore, ML approaches can also be applied to aspects of QSP modeling. Both approaches are powerful tools and there is considerable interest in integrating QSP modeling and ML. So far, a few successful implementations have been carried out from which we have learned about how each approach can overcome unique limitations of the other. The QSP + ML working group of the International Society of Pharmacometrics QSP Special Interest Group was convened in September, 2019 to identify and begin realizing new opportunities in QSP and ML integration. The working group, which comprises 21 members representing 18 academic and industry organizations, has identified four categories of current research activity which will be described herein together with case studies of applications to drug development decision making. The working group also concluded that the integration of QSP and ML is still in its early stages of moving from evaluating available technical tools to building case studies. This paper reports on this fast-moving field and serves as a foundation for future codification of best practices
    corecore