11 research outputs found

    Papillary thyroid cancer: Genetic alterations and molecular biomarker investigations

    Get PDF
    Papillary thyroid cancer (PTC) is the most prevalent form of malignancy among all cancers of the thyroid. It is also one of the few cancers with a rapidly increasing incidence. PTC is usually contained within the thyroid gland and generally biologically indolent. Prognosis of the cancer is excellent, with less than 2% mortality at 5 years. However, more than 25% of patients with PTC developed a recurrence during a long term follow-up. The present article provides an updated condensed overview of PTC, which focuses mainly on the molecular alterations involved and recent biomarker investigations

    Angiotensin Converting Enzyme Insertion/Deletion Gene Polymorphism: An Observational Study among Diabetic Hypertensive Subjects in Malaysia

    No full text
    Purpose: This study investigated the influence of angiotensin-1 converting enzyme (ACE) insertiondeletion (ID) gene polymorphism on the treatment responses of type 2 diabetic subjects at varying stages of nephropathy to ACE inhibitors (ACEI) with regard to blood pressure (MAP) and renal response (GFR). Methods: The pharmacological effect of ACE inhibition on mean arterial pressure (MAP) and glomerular filtration rate (GFR) were observed among a total of 62 subjects for a short-term duration of 15 months. MAP and GFR were calculated by standard mathematical formulae while the ACE ID genotype was determined using triple primer PCR. The general linear model repeated measures were applied to study the modulation of ACE inhibition on these parameters. Results: ACE ID genotyping of the 62 subjects showed that 19 (30.6 %) subjects had the II genotype, while 35 (56.4 %) subjects showed ID genotype and 8 (12.9 %) subjects had the DD genotype. Significant mean MAP reduction (p < 0.05) and null mean GFR changes (p > 0.05) from baseline values were observed among the subjects following antihypertensive treatment. However, when stratified according to ACE genotypes, no significant mean MAP and GFR changes were observed between genotypes following antihypertensive treatment (p > 0.05). Conclusion: ACE ID gene polymorphism does not determine the treatment efficacy of ACE inhibitors in the Malaysian population

    Null association between ACE gene I/D polymorphism and diabetic nephropathy among multiethnic Malaysian subjects

    No full text
    Background: Wide inter-ethnic allelic variations of the Angiotensin Converting Enzyme (ACE) i nsertion-deletion (I/D) gene polymorphism were thought to be responsible for the conflicting gene-diabetic nephropathy disease association worldwide. We have investigated the genetic susceptibility of the ACE gene to diabetic nephropathy in the multiethnic Malaysian population. Materials and Methods: A total of 137 healthy (control) and 256 diabetic subjects were recruited. The diabetic subjects were further subdivided according to their nephropathy status based on urinary albumin-creatinine ratio (ACR) and glomerular filtration rate (GFR). Triple primer polymerase chain reaction (PCR) was used for ACE I/D genotyping. Subsequently, populationwide genetic analysis and gene-disease association studies were performed. Results: The genotype frequencies in all subgroups were in Hardy-Weinberg equilibrium. Similar allelic and genotypic frequency of ACE I/D gene polymorphism was observed between healthy controls versus pooled type 2 diabetes mellitus (T2DM) subjects, and normoalbuminuria versus microalbuminuria, macroalbuminuria and End Stage Renal Failure (ESRF) (P &gt; 0.05). Neither ethnicity nor gender exerted any influence on the ACE I/D gene polymorphism (P &gt; 0.05), with the exception of the Chinese ethnic group which exhibited a higher frequency of ID genotype (P = 0.042). A multinomial logistic regression model showed that predictive factors including age, systolic blood pressure (SBP), high density lipoprotein (HDL) and glycosylated hemoglobin (HbA1C) were independently associated with diabetic nephropathy, in that order. Conclusion: The I/D polymorphism of the ACE gene is not significantly associated with both T2DM and/or diabetic nephropathy in this Malaysian population regardless of ethnicity and gender

    Plasma antioxidants and oxidative stress status in obese women: correlation with cardiopulmonary response

    No full text
    Introduction A high body fat coupled with low cardiopulmonary fitness and an increase in oxidative stress has been connoted as contributing factors in developing cardiovascular comorbidities. This study aimed to investigate the correlation between antioxidants and oxidative stress status with cardiopulmonary responses in women of different body mass index (BMI). Subjects and Methods Eighty female adults were recruited and divided into three groups; normal weight (n = 23), overweight (n = 28) and obese (n = 29), according to their BMI. Blood samples were obtained prior to cardiopulmonary exercise testing. Plasma samples were separated by centrifugation and analysed for enzymatic antioxidant activity including catalase, glutathione peroxidase and superoxide dismutase. Non-enzymatic antioxidant activities were assessed using 2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging and ferric reducing ability of plasma (FRAP) assays. To evaluate the oxidative stress status of subjects, levels of reactive oxygen species and malondialdehyde, the by-product of lipid peroxidation, were measured. Cardiopulmonary responses were analysed using cardiopulmonary exercise testing (CPET) which involved 15 various parameters such as peak oxygen consumption, metabolic equivalents and respiratory exchange ratio. Results The obese group had significantly lower ABTS radical scavenging and FRAP activities than the normal weight group. A higher catalase activity was observed in the obese group than the normal weight group. Spearman’s correlation showed an inverse relationship between catalase and peak oxygen consumption, while partial correlation analysis showed inverse correlations between superoxide dismutase and respiratory frequency, ABTS activity and oxygen pulse, and between ABTS activity and cardiac output. Conclusion Our results demonstrate a lower cardiovascular fitness and antioxidant capacity in obese women; the higher catalase activity may be a compensatory mechanism. The negative correlations found between these two parameters may indicate the potential effect of antioxidants on the cardiopulmonary system and deserve further analysis in a larger population. Nevertheless, this study provides the basis for future studies to further explore the relationships between redox status and cardiopulmonary responses. This can potentially be used to predict future risk of developing diseases associated with oxidative stress, especially pulmonary and cardiovascular diseases

    Effect of hesperidin on the temporal regulation of redox homeostasis in clock mutant (Cryb) of Drosophila melanogaster

    No full text
    Disorganized redox homeostasis is a main factor causing a number of diseases and it is imperative to comprehend the orchestration of circadian clock under oxidative stress in the organism, Drosophila melanogaster. This investigation analyses the influence of hesperidin on the circadian rhythms of lipid peroxidation products and antioxidants during rotenone-stimulated oxidative stress in fruit fly. The characteristics of rhythms of thiobarbituric acid reactive substances (TBARS), antioxidants (superoxide dismutase (SOD) and catalase (CAT)) were noticeably decreased in rotenone administered flies. Supplementation of hesperidin to rotenone-treated flies increased the mesor and modulated the amplitudes of antioxidants and conspicuously decreased the mesor values of TBARS. In addition, delays in acrophase in rotenone-induced flies were reversed by hesperidin treatment. Thus, treatment of hesperidin caused normalization of the altered rhythms. Disorganization of 24 h rhythms in markers of redox homeostasis was observed during rotenone treatment and the impairment is severe in circadian clock mutant (Cryb) flies. Reversibility of rhythms was prominent subsequent to hesperidin treatment in wild-type flies than (Cryb) flies. These observations denote a role of circadian clock in redox homeostasis and the use of Drosophila model in screening putative antioxidative phytomedicines prior to their usage in mammalian systems

    Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster

    No full text
    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock

    Application of Proteomics in Pancreatic Ductal Adenocarcinoma Biomarker Investigations: A Review

    No full text
    Pancreatic ductal adenocarcinoma (PDAC), a highly aggressive malignancy with a poor prognosis is usually detected at the advanced stage of the disease. The only US Food and Drug Administration-approved biomarker that is available for PDAC, CA 19-9, is most useful in monitoring treatment response among PDAC patients rather than for early detection. Moreover, when CA 19-9 is solely used for diagnostic purposes, it has only a recorded sensitivity of 79% and specificity of 82% in symptomatic individuals. Therefore, there is an urgent need to identify reliable biomarkers for diagnosis (specifically for the early diagnosis), ascertain prognosis as well as to monitor treatment response and tumour recurrence of PDAC. In recent years, proteomic technologies are growing exponentially at an accelerated rate for a wide range of applications in cancer research. In this review, we discussed the current status of biomarker research for PDAC using various proteomic technologies. This review will explore the potential perspective for understanding and identifying the unique alterations in protein expressions that could prove beneficial in discovering new robust biomarkers to detect PDAC at an early stage, ascertain prognosis of patients with the disease in addition to monitoring treatment response and tumour recurrence of patients

    Analyses of antioxidant status and nucleotide alterations in genes encoding antioxidant enzymes in patients with benign and malignant thyroid disorders

    Get PDF
    Background Synthesis of thyroid hormones and regulation of their metabolism involve free radicals that may affect redox balance in the body. Thyroid disorders causing variations in the levels of thyroid hormones may alter cellular oxidative stress. The aim of this study was to measure the antioxidant activities and biomarkers of oxidative stress in serum and red blood cells (RBC) of patients with benign and malignant thyroid disorders and to investigate if changes in the antioxidant activities in these patients were linked to alterations in genes encoding the antioxidant enzymes. Methods Forty-one patients with thyroid disorders from University of Malaya Medical Centre were recruited. They were categorised into four groups: multinodular goitre (MNG) (n = 18), follicular thyroid adenoma (FTA) (n = 7), papillary thyroid cancer (PTC) (n = 10), and follicular thyroid cancer (FTC) (n = 6). Serum and RBC of patients were analysed for antioxidant activities, antioxidant enzymes, and biomarkers of oxidative stress. Alterations in genes encoding the antioxidant enzymes were analysed using whole exome sequencing and PCR–DNA sequencing. Results Patients with thyroid disorders had significantly higher serum superoxide dismutase (SOD) and catalase (CAT) activities compared to control, but had lower activities in RBC. There were no significant changes in serum glutathione peroxidase (GPx) activity. Meanwhile, GPx activity in RBC was reduced in PTC and FTC, compared to control and the respective benign groups. Antioxidant activities in serum were decreased in the thyroid disorder groups when compared to the control group. The levels of malondialdehyde (MDA) were elevated in the serum of FTA group when compared to controls, while in the RBC, only the MNG and PTC groups showed higher MDA equivalents than control. Serum reactive oxygen species (ROS) levels in PTC group of both serum and RBC were significantly higher than control group. Whole exome sequencing has resulted in identification of 49 single nucleotide polymorphisms (SNPs) in MNG and PTC patients and their genotypic and allelic frequencies were calculated. Analyses of the relationship between serum enzyme activities and the total SNPs identified in both groups revealed no correlation. Discussion Different forms of thyroid disorders influence the levels of antioxidant status in the serum and RBC of these patients, implying varying capability of preventing oxidative stress. A more comprehensive study with a larger target population should be done in order to further evaluate the relationships between antioxidant enzymes gene polymorphisms and thyroid disorders, as well as strengthening the minor evidences provided in literatures

    iTRAQ analysis of urinary proteins: Potential use of gelsolin and osteopontin to distinguish benign thyroid goiter from papillary thyroid carcinoma

    No full text
    Background: Benign thyroid goiter (BTG) and papillary thyroid carcinoma (PTC) are often interchangeably misdiagnosed. Methods: Pooled urine samples of patients with BTG (n = 10), patients with PTC (n = 9) and healthy controls (n = 10) were subjected to iTRAQ analysis and immunoblotting. Results: The ITRAQ analysis of the urine samples detected 646 proteins, 18 of which showed significant altered levels (p 1.5) between patients and controls. Whilst four urinary proteins were commonly altered in both BTG and PTC patients, 14 were unique to either BTG or PTC. Amongst these, four proteins were further chosen for validation using immunoblotting, and the enhanced levels of osteopontin in BTG patients and increased levels of a truncated gelsolin fragment in PTC patients, relative to controls, appeared to corroborate the findings of the iTRAQ analysis. Conclusion: The data of the present study is suggestive of the potential application of urinary osteopontin and gelsolin to discriminate patients with BTG from those with PTC non-invasively. However, this needs to be further validated in studies of individual urine samples
    corecore