47 research outputs found

    Large Proteins Have a Great Tendency to Aggregate but a Low Propensity to Form Amyloid Fibrils

    Get PDF
    The assembly of soluble proteins into ordered fibrillar aggregates with cross-β structure is an essential event of many human diseases. The polypeptides undergoing aggregation are generally small in size. To explore if the small size is a primary determinant for the formation of amyloids under pathological conditions we have created two databases of proteins, forming amyloid-related and non-amyloid deposits in human diseases, respectively. The size distributions of the two protein populations are well separated, with the systems forming non-amyloid deposits appearing significantly larger. We have then investigated the propensity of the 486-residue hexokinase-B from Saccharomyces cerevisiae (YHKB) to form amyloid-like fibrils in vitro. This size is intermediate between the size distributions of amyloid and non-amyloid forming proteins. Aggregation was induced under conditions known to be most effective for amyloid formation by normally globular proteins: (i) low pH with salts, (ii) pH 5.5 with trifluoroethanol. In both situations YHKB aggregated very rapidly into species with significant β-sheet structure, as detected using circular dichroism and X-ray diffraction, but a weak Thioflavin T and Congo red binding. Moreover, atomic force microscopy indicated a morphology distinct from typical amyloid fibrils. Both types of aggregates were cytotoxic to human neuroblastoma cells, as indicated by the MTT assay. This analysis indicates that large proteins have a high tendency to form toxic aggregates, but low propensity to form regular amyloid in vivo and that such a behavior is intrinsically determined by the size of the protein, as suggested by the in vitro analysis of our sample protein

    Heterologous Amyloid Seeding: Revisiting the Role of Acetylcholinesterase in Alzheimer's Disease

    Get PDF
    Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-β peptide (Aβ) production via β and γ secretases in Alzheimer's Disease (AD), is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Aβ in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE) and neprilysin (NEP). The known association of human acetylcholinesterase (hAChE) with pathological aggregates in AD together with its ability to increase Aβ fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE575-614) is an exposed amphiphilic α-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR) with high propensity for conversion to non-native (hidden) β-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE586-599) encompassing the CSR region shares homology with Aβ and forms β-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE β-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE586-599, or versus Aβ, differed. Moreover, IDE digestion of T40 triggered the conformational switch from α- to β-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers). Crucially, these CSR species significantly increased Aβ fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation for observations that implicate hAChE in the extent of Aβ deposition in the brain. Furthermore, this process of heterologous amyloid seeding by a proteolytic fragment from another protein may represent a previously underestimated pathological trigger, implying that the abundance of the major amyloidogenic species (Aβ in AD, for example) may not be the only important factor in neurodegeneration

    Identification of a novel human islet amyloid polypeptide b-sheet domain and factors influencing fibrillogenesis

    No full text
    Human islet amyloid polypeptide (hIAPP) accumulates as pancreatic amyloid in type 2 diabetes and readily forms fibrils in vitro. Investigations into the mechanism of hIAPP fibril formation have focused largely on residues 20 to 29, which are considered to comprise a primary amyloidogenic domain. In rodents, proline substitutions within this region and the subsequent ß-sheet disruption, prevents fibril formation. An additional amyloidogenic fragment within the C-terminal sequence, residues 30 to 37, has been identified recently. We have extended these observations by examining a series of overlapping peptide fragments from the human and rodent sequences. Using protein spectroscopy (CD/FTIR), electron microscopy and X-ray diffraction, a previously unrecognised amyloidogenic domain was localised within residues 8 to 20. Synthetic peptides corresponding to this region exhibited a transition from random coil to ß-sheet conformation and assembled into fibrils having a typical amyloid-like morphology. The comparable rat 8-20 sequence, which contains a single His18Arg substitution, was also capable of assembling into amyloid-like fibrils. Examination of peptide fragments corresponding to residues 1 to 13 revealed that the immediate N-terminal region is likely to have only a modulating influence on fibril formation or conformational conversion. The contributions of charged residues as they relate to the amyloid-forming 8-20 sequence were also investigated using IAPP fragments and by assessing the effects of pH and counterions. The identification of these principal amyloidogenic sequences and the effects of associated factors provide details on the IAPP aggregation pathway and structure of the peptide in its fibrillar stat

    Pancreatic Islet Amyloid and Diabetes

    No full text

    Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient  -sheet

    No full text
    Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques

    Structural insights into the polymorphism of amyloid-like fibrils formed by region 20-29 of amylin revealed by solid-state NMR and X-ray fibre diffraction

    No full text
    Many unrelated proteins and peptides can assemble into amyloid or amyloid-like nanostructures, all of which share the cross-beta motif of repeat arrays of beta-strands hydrogen-bonded along the fibril axis. Yet, paradoxically, structurally polymorphic fibrils may derive from the same initial polypeptide sequence. Here, solid-state nuclear magnetic resonance (SSNMR) analysis of amyloid-like fibrils of the peptide hIAPP 20-29, corresponding to the region S (20)NNFGAILSS (29) of the human islet amyloid polypeptide amylin, reveals that the peptide assembles into two amyloid-like forms, (1) and (2), which have distinct structures at the molecular level. Rotational resonance SSNMR measurements of (13)C dipolar couplings between backbone F23 and I26 of hIAPP 20-29 fibrils are consistent with form (1) having parallel beta-strands and form (2) having antiparallel strands within the beta-sheet layers of the protofilament units. Seeding hIAPP 20-29 with structurally homogeneous fibrils from a 30-residue amylin fragment (hIAPP 8-37) produces morphologically homogeneous fibrils with similar NMR properties to form (1). A model for the architecture of the seeded fibrils is presented, based on the analysis of X-ray fiber diffraction data, combined with an extensive range of SSNMR constraints including chemical shifts, torsional angles, and interatomic distances. The model features a cross-beta spine comprising two beta-sheets with an interface defined by residues F23, A25, and L27, which form a hydrophobic zipper. We suggest that the energies of formation for fibril form containing antiparallel and parallel beta-strands are similar when both configurations can be stabilized by a core of hydrophobic contacts, which has implications for the relationship between amino acid sequence and amyloid polymorphism in general

    Matrix Metalloproteinase-9 Protects Islets from Amyloid-induced Toxicity

    No full text
    Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased β-cell apoptosis and reduced β-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves hIAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting β-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1–15, 1–25, 16–37, 16–25, and 26–37. The fragments 1–15, 1–25, and 26–37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with β cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16–37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16–37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16–37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and β-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit β-cell loss in type 2 diabetes
    corecore