42 research outputs found

    Classification of kneeling and squatting in workers wearing protective equipment: development and validation of a rule-based model using wireless triaxial accelerometers

    Get PDF
    Several professions in industries, such as petroleum, manufacturing, construction, mining, and forestry require prolonged work tasks in awkward postures, increasing workers’ risks for musculoskeletal pain and injury. Therefore, we developed and validated a rule-based model for classifying unilateral and bilateral kneeling and squatting based on 15 individuals wearing personal protective equipment and using three wireless triaxial accelerometers. The model provided both high sensitivity and specificity for classifying kneeling (0.98; 0.98) and squatting (0.96; 0.91). Hence, this model has the potential to contribute to increased knowledge of physical work demands and exposure thresholds in working populations with strict occupational safety regulations. Practitioner summary: Our results indicate that this rule-based model can be applied in a human-factors perspective enabling high-quality quantitative information in the classification of occupational kneeling and squatting, known risk factors for musculoskeletal pain, and sick leave. This study is adapted for working populations wearing personal protective equipment and aimed for long-term measurements in the workplace.publishedVersio

    Towards Human Motion Tracking Enhanced by Semi-Continuous Ultrasonic Time-of-Flight Measurements

    Get PDF
    Human motion analysis is a valuable tool for assessing disease progression in persons with conditions such as multiple sclerosis or Parkinson’s disease. Human motion tracking is also used extensively for sporting technique and performance analysis as well as for work life ergonomics evaluations. Wearable inertial sensors (e.g., accelerometers, gyroscopes and/or magnetometers) are frequently employed because they are easy to mount and can be used in real life, out-of-the-lab settings, as opposed to video-based lab setups. These distributed sensors cannot, however, measure relative distances between sensors, and are also cumbersome when it comes to calibration and drift compensation. In this study, we tested an ultrasonic time-of-flight sensor for measuring relative limb-to-limb distance, and we developed a combined inertial sensor and ultrasonic time-of-flight wearable measurement system. The aim was to investigate if ultrasonic time-of-flight sensors can supplement inertial sensor-based motion tracking by providing relative distances between inertial sensor modules. We found that the ultrasonic time-of-flight measurements reflected expected walking motion patterns. The stride length estimates derived from ultrasonic time-of-flight measurements corresponded well with estimates from validated inertial sensors, indicating that the inclusion of ultrasonic time-of flight measurements could be a feasible approach for improving inertial sensor-only systems. Our prototype was able to measure both inertial and time-of-flight measurements simultaneously and continuously, but more work is necessary to merge the complementary approaches to provide more accurate and more detailed human motion tracking.publishedVersio

    Hemodynamic effects of a dielectric elastomer augmented aorta on aortic wave intensity: An in-vivo study

    Get PDF
    Dielectric elastomer actuator augmented aorta (DEA) represents a novel approach with high potential for assisting a failing heart. The soft tubular device replaces a section of the aorta and increases its diameter when activated. The hemodynamic interaction between the DEA and the left ventricle (LV) has not been investigated with wave intensity (WI) analysis before. The objective of this study is to investigate the hemodynamic effects of the DEA on the aortic WI pattern. WI was calculated from aortic pressure and flow measured in-vivo in the descending aorta of two pigs implanted with DEAs. The DEAs were tested for different actuation phase shifts (PS). The DEA generated two decompression waves (traveling upstream and downstream of the device) at activation followed by two compression waves at deactivation. Depending on the PS, the end-diastolic pressure (EDP) decreased by 7% (or increased by 5–6%). The average early diastolic pressure augmentation (P_dia) increased by 2% (or decreased by 2–3%). The hydraulic work (W_H) measured in the aorta decreased by 2% (or increased by 5%). The DEA-generated waves interfered with the LV-generated waves, and the timing of the waves affected the hemodynamic effect of the device. For the best actuation timing the upstream decompression wave arrived just before aortic valve opening and the upstream compression wave arrived just before aortic valve closure leading to a decreased EDP, an increased P_dia and a reduced W_H

    Biogenic polymer-based patches for congenital cardiac surgery: a feasibility study.

    Get PDF
    OBJECTIVE Currently used patch materials in congenital cardiac surgery do not grow, renew, or remodel. Patch calcification occurs more rapidly in pediatric patients eventually leading to reoperations. Bacterial cellulose (BC) as a biogenic polymer offers high tensile strength, biocompatibility, and hemocompatibility. Thus, we further investigated the biomechanical properties of BC for use as patch material. METHODS The BC-producing bacteria Acetobacter xylinum were cultured in different environments to investigate optimal culturing conditions. For mechanical characterization, an established method of inflation for biaxial testing was used. The applied static pressure and deflection height of the BC patch were measured. Furthermore, a displacement and strain distribution analysis was performed and compared to a standard xenograft pericardial patch. RESULTS The examination of the culturing conditions revealed that the BC became homogenous and stable when cultivated at 29°C, 60% oxygen concentration, and culturing medium exchange every third day for a total culturing period of 12 days. The estimated elastic modulus of the BC patches ranged from 200 to 530 MPa compared to 230 MPa for the pericardial patch. The strain distributions, calculated from preloaded (2 mmHg) to 80 mmHg inflation, show BC patch strains ranging between 0.6% and 4%, which was comparable to the pericardial patch. However, the pressure at rupture and peak deflection height varied greatly, ranging from 67 to around 200 mmHg and 0.96 to 5.28 mm, respectively. The same patch thickness does not automatically result in the same material properties indicating that the manufacturing conditions have a significant impact on durability. CONCLUSIONS BC patches can achieve comparable results to pericardial patches in terms of strain behavior as well as in the maximum applied pressure that can be withstood without rupture. Bacterial cellulose patches could be a promising material worth further research

    The AutoActive Research Environment

    Get PDF
    ARE consists of three different software modules; ActivityPresenter, a Matlab toolbox, and a Python toolbox. ActivityPresenter is created to simplify the process of visualising, synchronising, and organising data, such as sensor data and videos from multiple sources, while the Matlab and Python toolboxes allow researchers to easily process data. Furthermore, a file format called AutoActiveZip (aaz) was created to store data and metadata in an organized manner. This format is a structured archive which contains immutable data structures and where the information within can be accessed without the use of temporary files that needs to be cleaned up. This ensures that sensitive data are not inadvertently left in temporary folders in case of program failure. The format allows the strengths of ActivityPresenter, such as synchronising data from multiple sources, and visualising videos and sensor data side by side to be combined with algorithms developed in Matlab and Python.publishedVersio

    A novel soft cardiac assist device based on a dielectric elastomer augmented aorta: an in vivo study

    Get PDF
    Although heart transplant is the preferred solution for patients suffering from heart failures, cardiac assist devices remain key substitute therapies. Among them, aortic augmentation using dielectric elastomer actuators (DEAs) might be an alternative technological application for the future. The electrically driven actuator does not require bulky pneumatic elements (such as conventional intra-aortic balloon pumps) and conforms tightly to the aorta thanks to the manufacturing method presented here. In this study, the proposed DEA-based device replaces a section of the aorta and acts as a counterpulsation device. The feasibility and validation of in vivo implantation of the device into the descending aorta in a porcine model, and the level of support provided to the heart are investigated. Additionally, the influence of the activation profile and delay compared to the start of systole is studied. We demonstrate that an activation of the DEA just before the start of systole (30 ms at 100 bpm) and deactivation just after the start of diastole (0-30 ms) leads to an optimal assistance of the heart with a maximum energy provided by the DEA. The end-diastolic and left ventricular pressures were lowered by up to 5% and 1%, respectively, compared to baseline. The early diastolic pressure was augmented in average by up to 2%

    Transvalvular Pressure Gradients for different Methods of Mitral Valve Repair only Neochordoplasty achieves native Valve Gradients

    Full text link
    OBJECTIVES: Many surgical and interventional methods are available to restore patency for patients with degenerative severe mitral valve regurgitation. Leaflet resection and neochordoplasty, which both include ring annuloplasty, are the most frequently performed techniques for the repair of posterior mitral leaflet flail. It is unclear which technique results in the best haemodynamics. In this study, we investigated the effect of different mitral valve reconstruction techniques on mitral valve haemodynamics and diastolic transvalvular pressure gradient in an ex vivo porcine model. METHODS: Eight porcine mitral valves were tested under pulsatile flow conditions in an in vitro pulsatile flow loop for haemodynamic quantification. Severe acute posterior mitral leaflet flail was created by resecting the posterior marginal chorda. The acute mitral valve regurgitation was corrected using 4 different repair techniques, in each valve, in a strictly successive order: (i) neochordoplasty with polytetrafluoroethylene sutures alone and (ii) with ring annuloplasty, (iii) edge-to-edge repair and (iv) triangular leaflet resection, both with ring annuloplasty. Valve haemodynamics were measured and quantified for all valve configurations (native, rupture and each surgical reconstruction). The results were analysed using a validated statistical linear mixed model, and the P-values were calculated using a 2-sided Wald test. RESULTS: All surgical reconstruction techniques were able to sufficiently correct the acute mitral valve regurgitation. Neochordoplasty without ring annuloplasty was the only reconstruction technique that resulted in haemodynamic properties similar to the native mitral valve (P-values from 0.071 to 0.901). The diastolic transvalvular gradient remained within the physiological range for all reconstructions but was significantly higher than in the native valve for neochordoplasty with ring annuloplasty (P < 0.000), edge-to-edge repair (P < 0.000) and leaflet resection (P < 0.000). Neochordoplasty without ring annuloplasty resulted in a significantly better pressure gradient than neochordoplasty with a ring annuloplasty (P < 0.000). Additionally, neochordoplasty with a ring annuloplasty resulted in significantly lower transvalvular pressure gradients than edge-to-edge repair (P < 0.000) and leaflet resection (P < 0.000). CONCLUSIONS: Neochordoplasty with or without ring annuloplasty was the reconstruction technique that almost achieved native physiological haemodynamics after repair of posterior mitral leaflet flail after acute isolated chordal rupture in our ex vivo porcine model
    corecore