5 research outputs found

    Propionibacterium (Cutibacterium) granulosum Extracellular DNase BmdE Targeting Propionibacterium (Cutibacterium) acnes Biofilm Matrix, a Novel Inter-Species Competition Mechanism

    No full text
    Acne vulgaris is the most common dermatological disorder worldwide affecting more than 80% of adolescents and young adults with a global prevalence of 231 million cases in 2019. The involvement of the skin microbiome disbalance in the pathophysiology of acne is recognized, especially regarding the relative abundance and diversity of Propionibacterium acnes a well-known dominant human skin commensal. Biofilms, where bacteria are embedded into a protective polymeric extracellular matrix, are the most prevalent life style for microorganisms. P. acnes and its biofilm-forming ability is believed to be a contributing factor in the development of acne vulgaris, the persistence of the opportunistic pathogen and antibiotic therapy failures. Degradation of the extracellular matrix is one of the strategies used by bacteria to disperse the biofilm of competitors. In this study, we report the identification of an endogenous extracellular nuclease, BmdE, secreted by Propionibacterium granulosum able to degrade P. acnes biofilm both in vivo and in vitro. This, to our knowledge, may represent a novel competitive mechanism between two closely related species in the skin. Antibiotics targeting P. acnes have been the mainstay in acne treatment. Extensive and long-term use of antibiotics has led to the selection and spread of resistant bacteria. The extracellular DNase BmdE may represent a new bio-therapeutical strategy to combat P. acnes biofilm in acne vulgaris

    Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications

    No full text
    Polyhydroxyalkanoates (PHAs) are naturally occurring organic polyesters that are of interest for industrial and biomedical applications. These polymers are synthesized by most bacteria in times of unbalanced nutrient availability from a variety of substrates and they are deposited intracellularly as insoluble spherical inclusions or PHA granules. The granules consist of a polyester core, surrounded by a boundary layer with embedded or attached proteins that include the PHA synthase, phasins, depolymerizing enzymes, and regulatory proteins. Apart from ongoing industrial interest in the material PHA, more recently there has also been increasing interest in applications of the PHA granules as nano-/micro-beads after it was conceived that fusions to the granule associated proteins (GAPs) provide a way to immobilize target proteins at the granule surface. This review gives an overview of PHA granules in general, including biogenesis and GAPs, and focuses on their potential use as nano-/micro-beads in biotechnological and biomedical applications

    <i>In Vivo</i> Self-Assembly of Fluorescent Protein Microparticles Displaying Specific Binding Domains

    No full text
    In this study, fluorescent proteins (FPs) were engineered to self-assemble into protein particles inside recombinant Escherichia coli while mediating the display of various protein functionalities such as maltose binding protein or IgG binding domains of Protein A or G, respectively. Escherichia coli produced functional FP particles of up to 30% of cellular dry weight. The use of respective FP particles displaying certain binding domains in diagnostics and as bioseparation resins was demonstrated by direct comparison to commercial offerings. It was demonstrated that variable extensions (AVTS, FHKP, LAVG, or TS) of the N-terminus of FPs (GFP, YFP, CFP, HcRed) in combination with large C-terminal extensions such as translational fusion of the polyester synthase from Ralstonia eutropha or an aldolase from Escherichia coli led to extensive intracellular self-assembly of strongly fluorescent fusion protein particles of oval shape (0.5 × 1 μm). The strong fluorescent label of these bioparticles in combination with covalent display of protein functions provides a molecular toolbox for the design of self-assembled microparticles suitable for antibody-capture or ligand binding based diagnostic assays as well as the high affinity purification of target compounds such as antibodies

    <i>In Vivo</i> Self-Assembly of Fluorescent Protein Microparticles Displaying Specific Binding Domains

    No full text
    In this study, fluorescent proteins (FPs) were engineered to self-assemble into protein particles inside recombinant Escherichia coli while mediating the display of various protein functionalities such as maltose binding protein or IgG binding domains of Protein A or G, respectively. Escherichia coli produced functional FP particles of up to 30% of cellular dry weight. The use of respective FP particles displaying certain binding domains in diagnostics and as bioseparation resins was demonstrated by direct comparison to commercial offerings. It was demonstrated that variable extensions (AVTS, FHKP, LAVG, or TS) of the N-terminus of FPs (GFP, YFP, CFP, HcRed) in combination with large C-terminal extensions such as translational fusion of the polyester synthase from Ralstonia eutropha or an aldolase from Escherichia coli led to extensive intracellular self-assembly of strongly fluorescent fusion protein particles of oval shape (0.5 × 1 μm). The strong fluorescent label of these bioparticles in combination with covalent display of protein functions provides a molecular toolbox for the design of self-assembled microparticles suitable for antibody-capture or ligand binding based diagnostic assays as well as the high affinity purification of target compounds such as antibodies
    corecore