6,225 research outputs found

    Initial ionization rates in shock-heated Argon, Krypton, and Xenon

    Get PDF
    The rate of ionization behind strong shock waves in argon, krypton, and xenon, is observed by a transverse microwave probe, over a range of electron densities low enough that atom-atom inelastic collisions are the rate-determining mechanism. Shocks of Mach number 7.0 to 10.0 propagate down a 2-in. sq. aluminum shock tube into ambient gases at pressures of 3.0 to 17.0 mm. Hg., heating them abruptly to atomic temperatures of 5500°K to 9600°K. The subsequent relaxation toward ionization equilibrium is examined in its early stages by the reflection, transmission, and phase shifts of a 24.0 Gc/sec (1.25 cm) transverse microwave beam propagating between two rectangular horns abreast a glass test section. The data yield effective activation energies of 11.9 ± 0.5 eV for argon, 10.4 ± 0.5 eV for krypton, and 8.6 ± 0.5 eV for xenon. These coincide, within experimental error, with the first excitation potentials, rather than the ionization potentials of the gases, indicating that in this range ionization proceeds via a two-step process involving the first excited electronic states of which the excitation step is rate controlling

    Symmetry breaking in the self-consistent Kohn-Sham equations

    Full text link
    The Kohn-Sham (KS) equations determine, in a self-consistent way, the particle density of an interacting fermion system at thermal equilibrium. We consider a situation when the KS equations are known to have a unique solution at high temperatures and this solution is a uniform particle density. We show that, at zero temperature, there are stable solutions that are not uniform. We provide the general principles behind this phenomenon, namely the conditions when it can be observed and how to construct these non-uniform solutions. Two concrete examples are provided, including fermions on the sphere which are shown to crystallize in a structure that resembles the C60_{60} molecule.Comment: a few typos eliminate

    Interconnection and Competition Among Asymmetric Networks in the Internet Backbone Market

    Get PDF
    We examine the interrelation between interconnection and competition in the internet backbone market.Networks asymmetric in size choose among different interconnection regimes and compete for end-users.We show that a direct interconnection regime, Peering, softens competition compared to indirect interconnection since asymmetries become less influential when networks peer.If interconnection fees are paid, the smaller network pays the larger one. Sufficiently symmetric networks enter a Peering agreement while others use an intermediary network for exchanging traffic.This is in line with considerations of a non-US policy maker.In contrast, US policy makers prefer Peerings among relatively asymmetric networks.Internet Backbone;Endogenous Network Interconnection;Asymmetric Networks;Two-Way Access Pricing

    Quasi-exact-solution of the Generalized Exe Jahn-Teller Hamiltonian

    Full text link
    We consider the solution of a generalized Exe Jahn-Teller Hamiltonian in the context of quasi-exactly solvable spectral problems. This Hamiltonian is expressed in terms of the generators of the osp(2,2) Lie algebra. Analytical expressions are obtained for eigenstates and eigenvalues. The solutions lead to a number of earlier results discussed in the literature. However, our approach renders a new understanding of ``exact isolated'' solutions

    Pulsed electromagnetic gas acceleration

    Get PDF
    Terminal voltage measurements with long cathodes in a high power, quasi-steady MPD discharge show that the critical current for the onset of voltage fluctuations, which was previously shown to be a function of cathode area, approaches an asymptote for cathodes of very large surface area. Floating potential measurements and photographs of the discharge luminosity indicate that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance. Photoelectric measurements of particular argon neutral and ion transitions show that the higher electronic states are populated more heavily than would be calculated on the basis of Saha-Boltzmann equilibrium at the local electron temperature and number density. Preliminary optical depth measurements show that for a current of 4 kA and an argon mass flow of 12 g/sec, a population inversion exists between the upper and lower states of the 4880 A argon ion transition

    The Polyakov Loop and its Relation to Static Quark Potentials and Free Energies

    Full text link
    It appears well accepted in the literature that the correlator of Polyakov loops in a finite temperature system decays with the "average" free energy of the static quark-antiquark system, and can be decomposed into singlet and adjoint (or octet for QCD) contributions. By fixing a gauge respecting the transfer matrix, attempts have been made to extract those contributions separately. In this paper we point out that the "average" and "adjoint" channels of Polyakov loop correlators are misconceptions. We show analytically that all channels receive contributions from singlet states only, and give a corrected definition of the singlet free energy. We verify this finding by simulations of the 3d SU(2) pure gauge theory in the zero temperature limit, which allows to cleanly extract the ground state exponents and the non-trivial matrix elements. The latter account for the difference between the channels observed in previous simulations.Comment: 14 pages, 3 figures, 1 table; note and reference adde
    corecore