61 research outputs found

    Inverse Modelling to Forecast Enclosure Fire Dynamics

    Get PDF
    Despite advances in the understanding of fire dynamics over the past decades and despite the advances in computational capacity, our ability to predict the behaviour of fires in general and building fires in particular remains very limited. This thesis proposes and studies a method to use measurements of the real event in order to steer and accelerate fire simulations. This technology aims at providing forecasts of the fire development with a positive lead time, i.e. the forecast of future events is ready before those events take place. A simplified fire spread model is implemented, and sensor data are assimilated into the model in order to estimate the parameters that characterize the spread model and thus recover information lost by approximations. The assimilation process is posed as an inverse problem, which is solved minimizing a non linear cost function that measures the distance between sensor data and the forward model. In order to accelerate the optimization procedure, the ‘tangent linear model’ is implemented, i.e. the forward model is linearized around the initial guess of the governing parameters that are to be estimated, thus approximating the cost function by a quadratic function. The methodology was tested first with a simple two-zone forward model, and then with a coarse grid Computational Fluid Dynamics (CFD) fire model as forward model. Observations for the inverse modelling were generated using a fine grid CFD simulation in order to illustrate the methodology. A test case with observations from a real scale fire test is presented at the end of this document. In the two-zone model approach the spread rate, entrainment coefficient and gas transport time are the governing invariant parameters that are estimated. The parameters could be estimated correctly and the temperature and the height of the hot layer were reproduced satisfactorily. Moreover, the heat release rate and growth rate were estimated correctly with a positive lead time of up to 30 s. The results showed that the simple mass and heat balances and plume correlation of the zone model were enough to satisfactorily forecast the main features of the fire, and that positive lead times are possible. With the CFD forward model the growth rate, fuel mass loss rate and other parameters of a fire were estimated by assimilating measurements from the fire into the model. It was shown that with a field type forward model it is possible to estimate the growth rates of several different spread rates simultaneously. A coarse grid CFD model with very short computation times was used to assimilate measurements and it was shown that spatially resolved forecasts can be obtained in reasonable time, when combined with observations from the fire. The assimilation of observations from a real scale fire test into a coarse grid CFD model showed that the estimation of a fire growth parameter is possible in complicated scenarios in reasonable time, and that the resulting forecasts at localized level present good levels of accuracy. The proposed methodology is still subject to ongoing research. The limited capability of the forward model to represent the true fire has to be addressed with more detail, and the additional information that has to be provided in order to run the simulations has to be investigated. When using a CFD type forward model, additional to the detailed geometry, it is necessary to establish the location of the fire origin and the potential fuel load before starting the assimilation cycle. While the fire origin can be located easily (as a first approximation the location of the highest temperature reading can be used), the fuel load is potentially very variable and its exact distribution might be impractical to continually keep track of. It was however shown that for relatively small compartments the exact fuel distribution is not essential in order to produce an adequate forecast, and the fuel load could for example be established based on a statistical analysis of typical compartment layouts

    Modelling of the Growth Phase of Dalmarnock Fire Test One

    Get PDF
    Paper presented at Fire and Materials Conference 2011.The challenge of modelling a well characterized full-scale fire test using computational fluid dynamics is illustrated in this work comparing a priori and a posteriori simulations. In 2006, The Dalmarnock Fire Tests were conducted in two identical 3.5 m 4.75 m 2.5 m concrete enclosures with a real residential fuel load. This data set provides measured data at the highest spatial resolution available from a fire experiment to date. Prior to the tests, an international study of fire modelling was conducted in order to assess the state-of-the-art of fire simulations using a round-robin approach. Each of the seven round-robin teams independently simulated the test scenario a priori using a common detailed description of the compartment geometry, fuel packages, ignition source and ventilation conditions. Most teams decide to use the numerical code Fire Dynamics Simulator (FDSv4). Comparison to the experimental measurements showed a large scatter and considerable disparity (much larger than the error and variability associated to the experiments). The study showed that the accuracy predicting fire growth is poor. A posteriori simulations of the growth phase were conducted afterwards while having full access to all the measurements. No previous fire simulation had this large amount of data available for comparison. Simulations were compared against average and local measurements. The heat release rate is reconstructed from additional laboratory tests and upper and lower bounds for the fire growth are found. Within these bounds and after adjusting uncertain parameters, the level of agreement reached with the measurements was of 10 to 50% for the evolution of the average hot layer temperatures and between 20% and 200% for local temperatures

    Posteriori Modelling of Fire Test One

    Get PDF
    Chapter 11 in the book: The Dalmarnock Fire Tests: Experiments and Modelling, Edited by G. Rein, C. Abecassis Empis and R. Carvel, Published by the School of Engineering and Electronics, University of Edinburgh, 2007. ISBN 978-0-9557497-0-4This work shows that reproducing fire behaviour of a full-scale enclosure on a detailed level using CFD simulations is possible to certain degree but is a very challenging task. A posteriori (ie after the test) numerical simulations of the growth phase of Test One have been conducted while having full access to all the measurements, including temperature, smoke and flow data, camera footage and photographs, plus detailed information of the fuel load composition, geometry lay out and ventilation conditions. The more measurements are available, the lower the number of degrees of freedom of the model, and the harder is it reach good agreement to the measurements to a satisfactorily level. General fire behaviour such as average hot layer temperature evolution could be predicted with good agreement and less effort, but more detailed comparison, like thermal layering or flame location, demanded a great number of ill-defined parameters being adjusted and a large number of exploratory simulations run. A good agreement on most measurements could not be achieved

    Using Computational Fluid Dynamics in the forensic analysis of a prison fire

    Get PDF
    On the 8th of December of 2010 a fire killed 81 inmates in a Chilean prison. While the collected evidence (including eye witness’ accounts) indicated an intentional fire, started by a group of inmates who were fighting against another group and who ignited a mattress and threw it over a bunk bed inside the cell, it could not be established how fast the fire grew and whether the prison guards acted promptly enough to prevent the tragedy. In this context, the public defender office in charge of the case requested an independent investigation in order to determine the approximated time the fire started, and the temperature evolution of the padlocks at the cell doors during the initial stage, based on the construction characteristics of the prison, the existing materials and the evidence collected during the investigation. Computational Fluid Dynamics (CFD) were used to analyse the movement of the smoke and to match the first appearance of smoke on CCTV recordings at locations away from the fire, allowing for the estimation of the time-line of events. The padlock temperatures as a result of hot gases from the fire was also simulated. It was shown that the fire grew quickly and became uncontrollable before the guards could intervene. By the time the guards arrived at the cells’ door, the padlocks were shown to be too hot to be handled without protection

    Energy and exergy analysis of a bidirectional solar thermoelectric generator combining thermal energy storage

    Get PDF
    In this paper, energy and exergy analysis of a bidirectional solar thermoelectric generator (STEG) coupled to a latent heat storage and cooling system (LHSCS) has been carried out. The effect of various parameters of LHSCS on energy and exergy efficiencies of STEG have been analysed under climatic conditions of Chile’s Atacama Desert. It is found that the most relevant design parameter to improve the energy and exergy efficiencies of the thermoelectric generator (TEG) is the container insulation, followed by heat sink at the TEG hot side, fin thickness and the aspect ratio of the container. The results showed that an optimally designed insulation container can improve the energy and exergy efficiencies of LHSCS by 30% and 200%, respectively, and the TEG conversion efficiency by 30% during nighttime. Further, inclusion of heat sink at TEG hot side during reverse operation of TEG at night can improve the TEG efficiency by 20%. The optimal fin thickness can improve the TEG conversion efficiency by 20% during the night and LHSCS energy and exergy efficiencies by 30% and 23%, respectively. The container geometry should have higher aspect ratios. This study may help in optimal design of LHSCS for solar energy conversion applications in the desert locations

    A Priori Modelling of Fire Test One

    Get PDF
    Chapter 10 in the book: The Dalmarnock Fire Tests: Experiments and Modelling, Edited by G. Rein, C. Abecassis Empis and R. Carvel, Published by the School of Engineering and Electronics, University of Edinburgh, 2007. ISBN 978-0-9557497-0-4An international round-robin study of fire modelling was conducted prior to the Dalmarnock Fire Tests in order to assess the state-of-the-art of fire modelling in real scenarios. The philosophy behind the Dalmarnock Fire Tests was to provide instrumentation density suitable for comparison to field models and designed the scenario for maximum test reproducibility. Each participating team independently simulated a priori the test using a common detailed description of the compartment geometry, fuel packages, ignition source and ventilation conditions. The aim of the exercise was to forecast the test results as accurately as possible, and not to provide an engineering analysis with adequate conservative assumptions or safety factors. The modelling results and experimental measurements are compared among themselves, allowing for conclusions on the robustness, reliability and accuracy of current modelling practices. The results indicate large scatter and considerable disparity among predicted fires and also differing from the experimental data. The Dalmarnock Fire Test One was benchmarked against a second test to establish the potential experimental variability. The scatter of the simulations is much larger than the experimental error and the experimental variability. The study emphasises on the inherent difficulty of predicting fire dynamics and demonstrates that the main source of scatter is originated in the many degrees of freedom and the uncertainty in the input parameters. The conclusions from the study are made public to encourage debate and exchange of views on the topic of fire modelling

    Round-robin study of a priori modelling predictions of the Dalmarnock Fire Test One

    Get PDF
    Peer-reviewed journal paper published in 2009 about the international modelling exercise conducted in 2006.An international study of fire modelling was conducted prior to the Dalmarnock Fire Test One in order to assess the state-of-the-art of fire simulations using a round-robin approach. This test forms part of the Dalmarnock Fire Tests, a series of experiments conducted in 2006 in a high-rise building. The philosophy behind the tests was to provide measurements in a realistic fire scenario involving multiple fuel packages and non-trivial fire growth, and with an instrumentation density suitable for comparison with computational fluid dynamics models. Each of the seven round-robin teams independently simulated the test scenario a priori using a common detailed description of the compartment geometry, fuel packages, ignition source and ventilation conditions. The aim of the exercise was to forecast the fire development as accurately as possible and compare the results. The aim was not to provide an engineering analysis with conservative assumptions or safety factors. Comparison of the modelling results shows a large scatter and considerable disparity among the predictions, and between predictions and experimental measurements. The scatter of the simulations is much larger than the error and variability expected in the experiments. The study emphasises on the inherent difficulty of modelling fire dynamics in complex fire scenarios like Dalmarnock, and shows that the accuracy to predict fire growth (i.e. evolution of the heat released rate) is, in general, poor

    BioSimulators: a central registry of simulation engines and services for recommending specific tools

    Get PDF
    Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations
    • …
    corecore