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Abstract

Despite advances in the understanding of fire dynamics over the past decades and

despite the advances in computational capacity, our ability to predict the behaviour

of fires in general and building fires in particular remains very limited. This thesis

proposes and studies a method to use measurements of the real event in order to steer

and accelerate fire simulations. This technology aims at providing forecasts of the fire

development with a positive lead time, i.e. the forecast of future events is ready before

those events take place. A simplified fire spread model is implemented, and sensor data

are assimilated into the model in order to estimate the parameters that characterize the

spread model and thus recover information lost by approximations. The assimilation

process is posed as an inverse problem, which is solved minimizing a non linear cost

function that measures the distance between sensor data and the forward model. In order

to accelerate the optimization procedure, the ‘tangent linear model’ is implemented, i.e.

the forward model is linearized around the initial guess of the governing parameters

that are to be estimated, thus approximating the cost function by a quadratic function.

The methodology was tested first with a simple two-zone forward model, and then

with a coarse grid Computational Fluid Dynamics (CFD) fire model as forward model.

Observations for the inverse modelling were generated using a fine grid CFD simulation

in order to illustrate the methodology. A test case with observations from a real scale

fire test is presented at the end of this document.

In the two-zone model approach the spread rate, entrainment coefficient and gas

transport time are the governing invariant parameters that are estimated. The parameters

could be estimated correctly and the temperature and the height of the hot layer were

reproduced satisfactorily. Moreover, the heat release rate and growth rate were estimated

correctly with a positive lead time of up to 30 s. The results showed that the simple mass

and heat balances and plume correlation of the zone model were enough to satisfactorily

forecast the main features of the fire, and that positive lead times are possible.

With the CFD forward model the growth rate, fuel mass loss rate and other parame-
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ters of a fire were estimated by assimilating measurements from the fire into the model.

It was shown that with a field type forward model it is possible to estimate the growth

rates of several different spread rates simultaneously. A coarse grid CFD model with

very short computation times was used to assimilate measurements and it was shown

that spatially resolved forecasts can be obtained in reasonable time, when combined

with observations from the fire.

The assimilation of observations from a real scale fire test into a coarse grid CFD

model showed that the estimation of a fire growth parameter is possible in complicated

scenarios in reasonable time, and that the resulting forecasts at localized level present

good levels of accuracy.

The proposed methodology is still subject to ongoing research. The limited capabil-

ity of the forward model to represent the true fire has to be addressed with more detail,

and the additional information that has to be provided in order to run the simulations has

to be investigated. When using a CFD type forward model, additional to the detailed

geometry, it is necessary to establish the location of the fire origin and the potential fuel

load before starting the assimilation cycle. While the fire origin can be located easily (as

a first approximation the location of the highest temperature reading can be used), the

fuel load is potentially very variable and its exact distribution might be impractical to

continually keep track of. It was however shown that for relatively small compartments

the exact fuel distribution is not essential in order to produce an adequate forecast, and

the fuel load could for example be established based on a statistical analysis of typical

compartment layouts.
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Preface

This thesis has been written in manuscript format. The material has been presented in

the following form:

• Chapter 1 is a general introduction to the research. Although this chapter is not a

manuscript on its own, it is loosely based on the following published papers:

A. Cowlard, W. Jahn, C. Abecassis-Empis, G. Rein, J.L. Torero. Sensor As-

sisted Fire Fighting. Fire Technology, in press, 2008. DOI:10.1007/s10694-

008-0069-1.

G. Rein, J.L. Torero, W. Jahn, J. Stern-Gottfried, N.L. Ryder, S. Desanghere,

M. Lazaro, F. Mowrer, A. Coles, D. Joyeux, Alvear D., J. Capote, A. Jowsey,

C. Abecassis-Empis, and P. Reszka. Round–Robin Study of a priori Mod-

elling Predictions of the Dalmarnock Fire Test One. Fire Safety Journal,

44(4):590–602, 2009. DOI:10.1016/j.firesaf.2008.12.008

• Chapter 2 consists of a manuscript that illustrates the complexity of using nu-

merical modelling to match the physical evidence in a real fire scenario. This is

intended for the fire engineering community, and has been submitted for publica-

tion in a relevant Journal and is currently in the peer review process.

• Chapter 3 consists of a manuscript where the sensitivity of a fire field model to its

input parameters is discussed. The work related to this manuscript was presented

at the 9th International Symposium on Fire Safety Science, and the manuscript is

published as:

W. Jahn, G. Rein, J.L. Torero. The Effect of Model Parameters on the

Simulation of Fire Dynamics. Fire Safety Science, Vol. 9, pp: 1341–1352,

2008. DOI:10.3801/IAFSS.FSS.9-1341.
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• Chapter 4 consists of a manuscript that illustrates the inverse modelling method-

ology using a zone modelling approach. This manuscript has been submitted for

publication in a relevant Journal and is currently under review.

• Chapter 5 consists of a manuscript where the application of the inverse modelling

to a fire field model is demonstrated. This manuscript has been submitted for

publication in a relevant Journal and is currently under review.

• Chapter 6 consists of a manuscript where the inverse modelling methodology

presented in chapters 4 and 5 is applied to a full scale fire test in order to establish

the growth rate of the fire. This manuscript has been submitted for publication in

a relevant Journal and is currently under review.

The main body of this document can be divided in two parts:

- In chapters 2 and 3 a ‘trial and error’ approach to inverse modelling of enclosure

fire dynamics is described using data from a real fire. Here the main focus is

on the thorough understanding of fire dynamics and the associated modelling

process. In the context of forecasting fire dynamics it became evident from this

first part that a simple and robust fire growth model is needed.

- In chapters 4 and 5 an automated inverse modelling process is proposed and

illustrated by means of a simplified virtual fire scenario (data are generated by a

fire model). Finally, in chapter 6 the presented methodology is put to trial using

real data of a complex fire scenario.

The first part justifies the transition from the real fire scenario (Dalmarnock) to a

idealized and simplified scenario in order to establish a methodology that can robustly

forecast fire growth, while the second part presents the methodology. The inverse

modelling is illustrated using firstly generated data, and then the real fire data from the

Dalmarnock Tests, thus closing the circle by returning to the initial set of data.
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1
Introduction

The human attraction for the prediction of future events permeates deep into science and

technology, where some disciplines have emerged to provide the scientific knowledge

capable of forecasting the dynamics of non-trivial systems. Astronomical objects, tides

and weather are the most popular examples.

Forecasting enclosure fire dynamics is a subject of central interest in fire safety

engineering. While the first line of response to a fire event is part of the design process

of a building in the form of compartmentation of open spaces, smoke barriers, egress

paths, suppression and detection systems etc., fires that overcome these measures may

occur, and it is necessary to prepare for that case. If a fire escalates and the building

and occupants are unable to terminate the threat by the time fire fighters arrive, then

intervention should take place and management of the scene will be delegated to the

fire service. The fire fighting strategy to follow during a potential fire is currently based

mostly on the experience and the intuition of commanding officers of the fire service on

duty, but it would be life saving if fire fighting strategies could be decided upon based

on short and medium term forecasts of the development of the fire. Not only would this

allow for more efficient strategies, it would also assure the safety of fire fighters who

enter the emergency scenario in order to attack the fire and rescue the occupants.

The state-of-the-art of fire safety engineering does currently not provide the tools
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to forecast fire events, and limited, experience based predictions that can be made are

assisted only by minor technological input such as smoke detectors or sprinkler systems.

In 1984 Howard Emmons, giving in to the aforementioned attraction, made a

prediction of a different nature. He ventured a forecast of the future development of

fire safety sciences, succeeding with surprising accuracy regarding the main activities

of fire research in the 1990’s, the dual characteristic of fire modelling (practical zone

models on one hand and highly complex field models for research on the other) until

the first quarter of the 21st century, and conjecturing a series of developments during

the centuries to come that are to be corroborated in the future [1]. For the decade of

2050 Emmons predicts the development of an integrated system that would provide

commanding fire officers with backup computed information to aid him in his critical

decisions.

The goal of this research is to take a first step into that direction by developing a

conceptual framework and a mathematical methodology that allows for forecasting of

fire events based on combining observations of physical quantities from the fire scenario

with numerical modelling. Data collected from the fire are used to feed a numerical

model with information of the evolving emergency, and thus to steer the computations.

1.1 FireGrid

Despite advances in the understanding of fire dynamics over the past decades and

despite the advances in computational capacity, our ability to predict the behaviour

of fires in general and building fires in particular using numerical models remains

very limited. From a fire fighting point of view, forecasting of fire events only makes

sense if it occurs with a positive lead time, i.e. if the prediction is based on current

information of the state of the system, and can be completed faster than the fire is

evolving. Current computational fluid dynamics (CFD) based fire models generally

demand heavy resources and computational time periods that are far greater than

the time associated with the processes being simulated (hours to model seconds). If

comprehensive computational models are ever to be used to estimate, forecast and

understand fire growth in support of emergency response, the computational time has

to be shorter than the event itself. This problem is being addressed in the FireGrid
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project [2], and a full justification of this project together with an introduction to sensor

assisted fire fighting is presented by Cowlard et al. [3]. A summary of the key points is

presented in the rest of this section.

Modern buildings provide some useful information about an ongoing fire emergency,

including emergency management plans, security camera footage and security panels

which can indicate in a crude manner the origin and magnitude of the event. This

information will be included in the decision making process of commanding officers,

who then can deploy people and equipment more effectively. The current density and

nature of information, however, makes reliance on experience and intuition unavoidable.

Although more detailed information about the emergency could be of great value, it

would have to be provided to commanding officers in a synthesized and summarized

manner in order to avoid information-overload. Sensors that track the evolution of

physical variables such as temperatures, gas concentrations, light intensity and mechan-

ical stress have to be interpreted to provide relevant information. Security cameras

can be used to count people or to assess the magnitude of a fire. There are some

examples in the literature where different cameras have been used for this purpose [4],

but while good results have been obtained in isolated cases, generalization has always

been proven difficult. Other sensors, like thermocouples or strain gauges provide point

measurements of physical variables that in isolation provide information of little value

or could mislead conclusions. Higher sensor density can portray a clearer picture of the

nature of the event, but as mentioned before, a large flow of data becomes difficult to

interpret and can rapidly result in information-overload. Tracking of the evolution of

physical variables per se is therefore not a useful option to assist an intervention in a

fire.

An alternative approach is to use the output of computational fire models in order to

obtain an insight into the evolving fire. Fire models are based on the numerical solution

of equations of energy, mass, momentum and species conservation, and their output can

reach from average temperatures of the hot layer of the fire compartment in the case

of zone models, to detailed field distributions of all kind of physical quantities such as

temperature, flow velocities, species concentration etc. in the case of field models. The

main limitation of computer fire models is that is it not possible to solve the underlying

physics accurately enough to actually predict fire development. Most complex fire
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models, based on Computational Fluid Dynamics (CFD), can reproduce simple fire

scenarios satisfactorily, but it takes several hours and even days to run them in order to

simulate a few minutes [5]. The state-of-the-art of fire modelling does not even allow

for those models to predict fire growth on a scale relevant to compartment fires, and

they must rely, just as simpler zone type models, on a previously defined heat release

rate as input. While technological and scientific progress could eventually make fire

models fast and precise enough, given the inherent uncertainty of the input parameters

that would need to be defined, it is questioned whether the output of fire models could

ever be robust enough. Fire dynamics are inherently transient with timescales ranging

from a few seconds to several hours, and they are governed by strong coupling between

the gas phase (movement of hot gases, combustion) and the solid phase (heating of

surface, pyrolysis, fire spread) [6].

Although a recent attempt of modelling flame spread from first principles has

shown good agreement with experimental observations [7], this can only consider

scenarios of very limited size (flame length in the order of 10 cm) due to the very

extensive computational time it requires. Natural fires in real-size enclosures involve

mechanisms that develop in length-scales ranging from micrometres (flame thickness)

to metres (compartment size), and time-scales from milliseconds (chemistry) to minutes

(burnout) [5]. Thus, coupled computational simulations from first principles of fire

growth would demand extensive computational times far greater than the time associated

with the phenomenon itself.
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Figure 1.1: Conceptual representation of the data assimilation process and the sensor
steering of model predictions even when fundamental changes take place in an evolving
emergency scenario.

Even if all the mechanisms could be solved correctly in an acceptable time, their

chaotic nature imposes a maximum possible lead time to the forecast, as has been
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shown for other dynamical systems (e.g. weather [8]). It is thus suggested that fire

modelling cannot be used for emergency response without feedback information from

the evolving fire scenario [3]. Nevertheless, in conjunction with sensor data it has

the potential to achieve required speed, precision and robustness. Sensor data can be

used as a substitute for detailed models enabling simpler approaches to provide fast

and well-informed outputs. Continuous correction of the model output by means of

sensor data can allow for steering of the models to account for uncertainty in the input

variables and for changes in the environment of an evolving fire scenario that modify

the fire dynamics (window breakage, door opening etc). This concept is illustrated in

Fig. 1.1, where sensor data is assessed and then continually reassessed to recreate the

fire environment and steer the computations. The model output can thus be used to

forecast the evolution of the event with some lead time. The information can then be

summarized and delivered to the fire service in the most useful form.

FireGrid thus aims to provide predictions of fire growth and fully developed fire

behaviour by feeding numerical models with information of the evolving fire scenario.

The philosophy behind it is to use measured data to provide the information that cannot

be obtained from the models, thus accelerating the modelling predictions by being able

to use relatively coarse grids and simplified models instead of highly complex models.

To further increase computational speed and to allow for escalation High Performance

Computers (HPC) are proposed to be used within a Grid configuration. HPC will

allow running parallelized versions of the models at increased speed and the Grid will

enable to use off-site computational resources on demand, combined with databases of

pre-computed scenarios.

The predictions would be used to produce a series of potential outcomes given

different intervention strategies. The outcomes are then optimized and a preferred

intervention strategy is defined by a Command & Control unit. The forecasts would

be presented in a succinct form that is compatible with the training and knowledge of

emergency responders, thus making interpretation of the output effective and reliable.

Continuous updating of the predictions would enable changes of strategy on the basis

of the evolution of the event.

As envisioned by Emmons [1], FireGrid will not be commercial at full scale within

the next decade. At this stage it is a concept under development, and the work presented
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in this thesis represents but one step towards an operational forecast system for fire

emergencies.

1.2 Dalmarnock Fire Tests

A series of real scale tests were conducted in a housing estate in Dalmarnock (Glasgow,

UK) in order to illustrate the concept of FireGrid, and to assess simple Command and

Control (C&C) procedures based on information from the fire that had been synthesized

in a crude manner. Detailed information of the experimental setup and outcome of the

Dalmarnock Fire Test can be found in [9, 10].

Three tests were conducted, two compartment fire tests (Test One and Test Two) and

a smoke filling test (Test Three) in the staircases. The compartment fire tests were set in

two identical flats in different floors of the building, both flats having the same layout,

furniture and sensors installed in order to assure the repeatability of the test. The impact

of changing the ventilation conditions in Test Two while the fire was evolving was

assessed comparing the outcome to Test One, where the fire was left to burn without

interaction from C&C.

Bedroom 1
Main

Compartment
Bedroom 2

Cupboard

Corridor

Bathroom

Hallway

Kitchen

N

1 m

(a) (b)

Figure 1.2: Dalmarnock Fire Test layout [9, 10]: (a) Flat compartments, vents and basic
dimensions (to scale), (b) Furniture in the main compartment.

Figure 1.2 shows the geometry and layout of the flat where Tests One and Two

where carried out. The compartments of the flat and their distribution are shown in

Fig. 1.2a. The main compartment, where the fire was started, is in the upper right corner.

A detailed layout of the test compartment and its furniture is given in Fig. 1.2b.

The main compartment, where the fires started, was heavily instrumented. Twenty
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thermocouple trees, with 12 vertically arranged thermocouples each, were spread

throughout the compartment. Five further trees of thermocouples were placed along

the window sill. Twenty nine thin-skin calorimeters were used to measure heat fluxes

on ceiling and walls. Eight laser emitter-receiver pairs were used to measure smoke

obscuration at different heights. Three bidirectional velocity probes were placed in both

compartment doors, and a further eight were placed outside the compartment window.

All sensors were connected to a set of central data loggers recording at a frequency of

0.5 Hz. Additionally, several early warning fire alarm systems and CCTV cameras were

installed in the compartment.

The fire was started in a waste paper basket located next to a sofa. A blanket that

was thrown over the armrest of the sofa and was hanging partially into the waste paper

basket allowed the fire to spread over the fire barriers in the armrest and ignite the

seating area of the sofa. After about 275 s the bookshelf next to the sofa ignited and was

rapidly engulfed in fire. Within 25 s after ignition of the bookshelf the fire had flashed

over.
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Figure 1.3: Comparison of the experimental average room temperature (oC) variation in
time (s) with experimental error of Dalmarnock Test One and Test Two [9, 10]. Data is
only presented until extinction of Test Two (400 seconds).

Figure 1.3 shows the average temperature of the gas phase measured in Test One

and Test Two during the first 400 s of the tests. Although the temperature is significantly

lower in Test Two, it is clear that the onset of flashover occurs at about the same time in
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both tests (around 300 s). The interaction of the C&C with the fire development could

influence the average temperatures in the compartment, but it could not delay or prevent

flashover. This reflects the repeatability intended for this set of experiments.

1.3 A priori Fire Modelling

The large amount of data collected in the Dalmarnock Fire Tests has been used for

assessment of fire modelling procedures (both a priori and a posteriori ) and for the

identification of relevant parameters in the fire modelling process.

Before the Dalmarnock Tests were carried out, a round-robin study of blind pre-

dictions was conducted in order to explore the a priori predictive capabilities of fire

modelling in realistic scenarios [11]. The aim of the exercise was to forecast the fire

development as accurately as possible and compare the results. The participating teams

were asked to forecast the test results as accurately as possible, and avoid engineering

analysis with conservative assumptions of safety factors, as is common for use in fire

safety design. All teams were given access to a common pool of information about

the experimental test set up and initial conditions. The information available to the

teams included geometry and dimensions of the flat, room layout and information

about furniture, photographs of the test compartment and the results of a laboratory

experiment were the same sofa that acted as ignition source in the Dalmarnock Tests

had been burnt.

Ten simulations were submitted, eight simulations using CFD (FDSv4 [12]) and

two simulations using zone models (CFAST [13]). Comparison of the modelling results

showed a large scatter and considerable disparity among the predictions, and between

predictions and experimental measurements.

Figure 1.4 shows large scatter in the outcome of the simulations. The predicted

HRR varies between less then 500 kW to over 8 MW, with the estimated HRR from the

experiments somewhere in the middle (around 3 MW).

Fig. 1.5 shows the evolution of the average hot layer temperature (Fig. 1.5a) and the

hot layer height (Fig. 1.5b) as predicted by the round-robin teams. The experimental

values are averaged over the entire layer assuming that during the growth phase the

interface is at the 100oC isotherm or at the height of the largest temperature gradient
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Figure 1.5: Evolution of the hot layer in the compartment:(a) average temperature and (b)
height to the interface from compartment floor. Experimental values derived assuming the
smoke layer interface at the 100oC isotherm. The legend in Fig. 1.4 applies.

when below 100oC at the very beginning of the test. The sensitivity of the height to the

smoke layer to variations of the assumed isotherm value is also presented in Fig. 1.5 for

the range from 90 to 250oC. The smoke height calculations agree with visual estimates

of the smoke layer height, during the fire growth stage, obtained from the camera

footage [9, 10]. During the post-flashover stages, the video cameras confirm that the

smoke layer engulfed the whole compartment and thus the height to the smoke layer is

zero.

There is a wide scatter of modelling results shown in Fig 1.5. Most simulations

under-predicted the hot layer temperature. Four simulations fell within a 10-40% under-

prediction range and the others were above the 50% range of over- and under-predictions.
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The very wide range of behaviours predicted reflects the influence of the difference

in overall assumptions used for the input. It is worth highlighting that the simulation

that performed the best at predicting the HRR (E1), predicting it within a 10% range,

predicted the average hot layer temperature within a 30% range but differs greatly from

the experimental measurements of smoke layer height.

The results of this study indicate large scatter and considerable disparity regarding

the evolution of the HRR, both amongst the predicted fires and between the predicted

fires and the experimental data. The scatter of the simulations is much larger than the

estimated experimental error. Moreover, comparison between the range of predicted

hot layer temperatures (seen in Fig. 1.5a) and the differences between Test One and

Test Two (seen in Fig. 1.3) further demonstrates that the scatter is also much larger than

the expected experimental variability. The study emphasized on the inherent difficulty

of modelling fire dynamics and particularly fire growth in complex fire scenarios like

Dalmarnock, and showed that the accuracy to (blindly) predict fire growth (i.e. evolution

of the heat release rate) is, in general, poor. However, since good predictions of the

effects of a fire in the far field can be achieved, once the fire growth is known [14], it

can be suggested based on the results of this study that forecasts of fire development are

possible, if they take into account feedback information from the evolving fire scenario.

1.4 Data Assimilation and Inverse Modelling

A deterministic prediction of any physical process is done by solving (numerically

or analytically) the system of differential equations that govern the process with a

certain set of initial and boundary conditions. In a complex dynamical system, such as a

compartment fire, the boundary conditions for the coupled sub-systems that compose the

overall dynamical system are complicated to obtain, as they depend on the interaction

between those systems. The release of combustible gases from a burning object is a

boundary condition to the transport of energy and mass in the gas phase. Similarly, the

heat radiated from the flame to the surface of the burning object is a boundary condition

to the transport of energy into the solid, and thus for the pyrolysis. While an overall

solution to this problem is in principle possible, it would require a large amount of

computational resources (fine grid in the order of 1 mm in order to resolve all the spatial
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variations of importance). Furthermore, the non-linearity of the underlying physics

would result in a theoretical limit to the predictability of the dynamics of the system

due to error propagation and subsequent divergence at large time scales [8].

Measurements from the fire compartment can assist the model calculations in two

different, although related, ways when assimilated into the model. On one hand collected

data can provide the details that cannot be obtained from a simplified fire model, but

would be necessary to produce a forecast. For example, it would be possible to model

fire growth using a field model with a grid much too coarse to reproduce the interactions

between gas and solid phase accurately, since the observations of temperature at some

point within the compartment can be used to recover the boundary conditions without

the need of solving the coupled systems explicitly. On the other hand observations

from the fire can be used to update ongoing simulations and thus extend the limit of

predictability, as suggested in Fig. 1.1.

The process of using observation from the dynamical system that is being mod-

elled in order to infer information about the boundary and initial conditions and other

parameters is known as inverse modelling (or solving an inverse problem).

In numerical weather predictions (NWP) the inverse modelling is a fundamental part

of the forecasting system, taking an important part of the computational resources [15,

16], and is given the name of ‘data assimilation’. In order to initialize the numerical

models that are used to forecast the state of the atmosphere, weather observations from

all over the planet are collected and then assimilated into the model. Observations are

assimilated by initializing a new forecast based on a previous forecast (several hours

back), and correcting it according to the difference between the previous forecast and

the observations [17, 18]. Most modern NWP systems assimilate observations during

a certain period of time (assimilation window) before starting the forecast, in order to

account for the dynamical coupling of the involved processes [19]. The assimilation

algorithm typically involves a linearization of the NWP system around the previous

forecast and the subsequent solution of a quadratic minimization problem [15, 20].

Since the problem of NWP is fundamentally the same as the problem addressed in this

work, a similar strategy is proposed and implemented and the name of data assimilation

is adopted for the inverse modelling, although the concept is extended somewhat to

comply with the particularities of the problem of fire event forecasting.
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In the modelling of the early stages of a compartment fire the details of the initial

conditions are of less importance than the details of the boundary conditions. It is

generally enough to assume ambient temperature homogeneously distributed over all

the gas phase, since temperatures of the combustion gases are four to five times higher,

so that local deviations from the ambient temperature in the initial condition become

negligible.

For the early stages of the fire we will thus focus on correctly establishing the

boundary conditions. It is proposed in this document to replace the highly complicated

interaction between gas and solid phase by a simplified fire growth model that is input

into the gas phase model as a boundary condition, and is based on a set of parameters

that do not depend on the feedback from the fire and are thus constant (at least for a

certain amount of time). The assumptions of the model and its implications and validity

are discussed in chapters 4 and 5.

Once the fire has passed the growing stage and flashover has occurred in the compart-

ment (the transition from a localized fire to a fire that engulfs the entire compartment),

ventilation conditions become very important. A change in the geometry (window

breakage, door opening etc.) can influence the development of the fire greatly. Such

changes can often not be predicted, and starting a new simulation, that includes this

information, from the beginning of the fire can be impractical. However, if a new

simulation is to be started after flashover has occurred, the initial conditions for that

simulation will be drastically different from ambient. The exact state of the system

at the time the simulation is started has to be obtained from measurements in the fire

compartment.

1.5 Review of Inverse Modelling of Fire Dynamics

Parameter estimation and inverse modelling are an important area within the engineering

and scientific community. In fire engineering, several studies have been undertaken.

Richards et al. [21] use a database of pre-run zone-type models to estimate fire location

and fire growth. They use the same zone model to generate the data for comparison, and

analyze the influence of measurements and modelling errors. Leblanc and Trouvé use a

zone model to predict the heat release rate (HRR) time-history based on observations
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generated using the same model [22]. While they are able to closely reproduce the HRR

past history, their work does not address how to produce a forecast of future events.

Koo et al. [23] used measurements from a fire test experiment to progressively steer

fire simulations towards the effective value using a Monte Carlo approach with a set of

parameters that was used for random generation of scenarios. While they were able to

reproduce past observations of temperature, they could not link the parameters of the

model to the physics of the full scale fire test, which limits the forecast of future events to

statistical considerations. Cowlard et al. [24, 25] estimate the upward flame spread rate

of PMMA based on visual recordings of the flame height and temperature measurements

at the PMMA. Their method was able to re-adjust the estimated parameters in order to

account for the transition from laminar to turbulent flow. In chapter 2 of this thesis a

trial and error approach to inverse modelling of enclosure fire dynamics is presented.

An upper and lower bound HRR curve is established based on comparison of the model

output to measurements of a real scale fire scenario.

As mentioned at the end of the previous section (section 1.4), the parameters that

have to be estimated for the fully developed fire are fundamentally different from the

parameters associated to the fire growth stage. The core of the work presented in

this thesis focuses on the forecasting of fire growth, and thus on the estimation of the

associated parameters. The fully developed fire, and the corresponding data assimilation

technique, is discussed only in the last chapter of this document (chapter 7), and only

an overview is presented.
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2
The Challenge of

A posteriori Modelling of the Growth

Phase of Dalmarnock Fire Test One

2.1 Introduction

Modelling of compartment fires using computational fluid dynamics (CFD) has been a

research topic since the introduction of computational techniques in fire science in the

1980’s [1]. Only in the last decade the available computational power and knowledge

on fire dynamics have grown sufficiently to carry out simulations of fire development

in real-size building enclosures, using grids that are fine enough to reproduce fire-

driven flows reasonably well [2]. CFD has since been extensively used to model fire

dynamics [3, 4, 5]. A common engineering application of CFD is the reconstruction

of accidental fires as part of forensic investigations. Recent examples are the 2001

WTC [6] and the 2003 Station Nightclub [7] investigations.

The state of the art of fire modelling is such that given a fire of a certain size and

power, CFD can be used to calculate the resulting temperature and smoke concentration

17



INVERSE MODELLING TO FORECAST ENCLOSURE FIRE DYNAMICS

fields. The fire source is therefore treated as a input into the model by means of a

prescribed heat release rate (HRR) as a function of time [8]. This poses a problem in the

study of accidental fires where the HRR is generally unknown. Predicting the evolution

of the fire (i.e., spread rate and pattern), and calculating the HRR instead of measuring

it, is a more challenging task that is still part of fundamental research [9, 10]. The

complex interaction between flames, hot gases and the solid phase requires a thorough

understanding of the different physical processes of combustion, radiation and solid

degradation.

Most modelling work in the literature corresponds to simple fire sources, like pool

fires or a single burning item, and avoids the more complex processes of flame spread

and fire growth. Little research has been done comparing simulations with real-scale

fire tests that use realistic fuel loads. Three examples are presented here. Reneke et

al. [11] simulated fire tests involving crib fires in a full scale single compartment with a

zone model obtaining reasonable agreement with the measured average temperatures

when the measured HRR is used as an input. Miles et al. [12] obtain good results in

average temperatures when performing simulations of a series of fire tests involving

wood cribs, but they do not compare results at the field level. Pope et al. [8] simulated

the 1999-2000 BRE large compartment test series [13] using the CFD code FDS. The

simulations provided reasonable agreement with the measured temperature field within

the context of structural fire safety.

This paper reports a series of CFD simulations conducted a posteriori to reproduce

the large-scale Dalmarnock Fire Test One that involved real burning items leading to a

complex fire spread process. The HRR of the growth phase was not measured directly,

but the compartment was densely instrumented thus providing a very rich set of data

that could be used to aid defining the HRR of the fire source and to reproduce the main

features of the fire. Many different simulations were conducted and many parameters

were readjusted to achieve acceptable agreement at the compartment average and field

level. The work can be seen as attempting to solve a large and complex inverse problem

by trial and error.

A key difference between previous modelling studies of large-scale tests and the

present work is that the heavily instrumented full-scale Dalmarnock Fire Tests provided

measurements at sufficient spatial resolution to be suitable for comparison with field
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Figure 2.1: Room layout with fuel load and location of sensors [14].

models at the grid size level [14].

2.2 Dalmarnock Test One

Detailed information about the experimental set-up and the chain of events that occurred

during the Test One can be found elsewhere [15, 14], but a short summary is given

here. Test One was held in a two-bedroom single family flat, with the living room set

up as the main experimental compartment. This compartment was 3.50 m by 4.75 m

wide and 2.45 m high with a 2.35 m by 1.18 m two-pane window as shown in Fig. 2.1.

While the main source of fuel was a two-seat sofa stuffed with flexible polyurethane

foam, the compartments also contained two office work desks with computers, each

with its own foam-padded chair, three tall wooden bookcases, a short plastic cabinet,

three small wooden coffee tables, a range of paper items and two tall plastic lamps. A

plastic wastepaper basket filled with crumpled newspaper and 300-500 ml of heptane

was the ignition source. The fire spread to a blanket on the sofa hanging into the basket,

igniting the seating area of the sofa. After about 275 s the bookshelf next to the sofa

ignited and was rapidly engulfed in fire. Within 25 s after ignition of the bookshelf the

compartment reached flashover conditions (see Table 2.1 for a time line of the events).

The HRR in the fire tests was estimated by the principle of oxygen depletion, using

the measurements from the gas velocity probes at all the ventilation openings and

assuming total O2 consumption [15]. An estimation for the post-flashover fire results

in about 3 MW before the first window breakage, and about 5 MW after the second
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Table 2.1: Time line of main events during Dalmarnock Test One. [14]

Event Time from ignition (s)

Ignition 0
Cushions ignite 9
Bookcase ignites 275
Fire engulfs bookcase (flashover) 300
Compartment window breakage (NW Pane) 800
Compartment window breakage (SW Pane) 1100
Extinction 1140

breakage as shown in Fig. 2.2a. During the growth phase the assumption of total O2

consumption does not hold, as the fire is not ventilation controlled, thus the evolution

of the HRR during fire growth is unknown.
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Figure 2.2: Measurements from the Dalmarnock Test One: a) estimated HRR (using
oxygen consumption), b) average temperature of the hot layer in the main compartment
(corrected for radiation) and c) vertical temperature distribution in front of the compartment
door at 600 s[14] (rack 4, see Fig 2.1).

Figure 2.2b shows the average temperature of the hot layer measured in Test One

and Fig. 2.2c the vertical distribution of temperatures along one specific thermocouple

rack. A detailed presentation of the data can be found in [15, 14].

Prior to Test One, laboratory experiments were conducted in order to determine the

HRR curves for the sofa and the bookshelves inside the furniture calorimeter (using an

exact replica of those used in Test One) [14]. A second series of laboratory experiments

was conducted after Test One in order to analyze variations to the ignition protocol [16].

These two sets of experiments were the only direct source of information on the HRR

in Test One.

Figure 2.3 shows the evolution of the HRR of the sofa and the effect of variations to

the ignition source. The experiment conducted prior to Test One (referred to as Set 1)
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Figure 2.3: Measured HRR for variations to the ignition source and equivalent t-squared
fires: a) measured in the laboratory prior to Test One including sofa and waste basket
(Set 1); and b) after Test One including the sofa, waste basket and blanket (Set 2).

(Fig. 2.3a) consisted of a sofa with two cushions, and a waste paper basket located next

to the sofa. Accelerant was poured into the paper basket and the basket was ignited.

The fire then spread over the armrest to the sofa and was stopped about 800 s after

ignition when approximately one third of the sofa had been burnt. In the experiments

conducted after Test One (referred to as Set 2, Fig. 2.3b), the exact ignition protocol of

Dalmarnock Test One was replicated, which was like Set 1 but including a blanket that

had been placed over the armrest of the sofa, and the accelerant distributed between

basket and blanket. The presence of the blanket in Set 2 allowed the fire to bypass

the armrest fire barrier and led to a faster growth rate involving the cushions. The fire

growth rate for Set 2 is equivalent to a t-squared fire with growth constant 0.0016 kW/s2

(a medium fire [17]). The constant in Set 1 is 0.0005 kW/s2 (corresponding to a slow

fire [17]). The two tests show that the uncertainty in the growth rate of the sofa fire

during the early stages is significant and varies between a slow and a medium fire.

Figure 2.3a suggests two patterns in the burning behaviour; an initial peak that

rapidly decreases is followed by a growing fire that resembles a t-squared curve. A

similar behaviour can be seen in Figure 2.3b for Set 2. It is conjectured that the initial

peak corresponds to the waste paper basket, accelerant and the blanket (in the case of

Set 2), while the t-squared fire corresponds to the sofa itself.

By measuring flame heights from visual recordings, it can be established that the

sofa’s HRR in Set 1 grew slower than the observed fire in Test One. Flashover in Test

One occurred at 300 s. According to Set 1, this is only 100 s after the period when the
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basket fire dominated the HRR. Comparison of the fire development using the video

available of both fires confirms this. At the initial laboratory experiment no blanket was

used, so that the fire could not spread across the armrest to the cushions as fast. The fire

in Dalmarnock Test One spread quickly from the basket over the armrest to the sofa,

whereas in Set 1, the flames took considerably longer to spread over the armrest.

2.3 A priori vs. A posteriori Modelling

Before the Dalmarnock Tests were carried out, a round-robin study of blind predic-

tions [9] was conducted in order to explore the a priori predictive capabilities of fire

modelling in realistic scenarios. The aim of the exercise was to forecast the fire devel-

opment as accurately as possible and compare the results. Comparison of the modelling

results showed a large scatter and considerable disparity among the predictions, and

between predictions and experimental measurements. The scatter of the simulations

was much larger than the error and variability expected in the experiments. The study

emphasized on the inherent difficulty of modelling fire dynamics in complex fire sce-

narios like Dalmarnock, and showed that the accuracy of blind prediction of fire growth

(i.e. evolution of the heat release rate) is poor.

The present work revisits the modelling of the Dalmarnock Fire Test One, this

time using the large set of measurements available. That is, the work is conducted a

posteriori. Many different simulations are conducted and many parameters are (re-

)adjusted until acceptable agreement is reached. Work is focused only on the growth

phase of the Dalmarnock fire Test One.

As mentioned before, during the growth phase of Test One the evolution of the

HRR is unknown. Moreover, the laboratory experiments of the sofa and similar ignition

sources show significant uncertainty. Indeed, this is one of the most important issues

addressed in this chapter. The challenge is to be able to reproduce the HRR such that

the fire environment (temperature and smoke) is simulated correctly. The work solves a

large and complex inverse problem by trial and error.
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2.4 Computational Domain

The code Fire Dynamics Simulator v4.07 [18, 19], one of the most commonly used fire

CFD codes, is used here. FDS solves a form of the Navier-Stokes equations adequate for

low-speed thermally driven flows. While large eddies are solved directly, turbulences at

subgrid scale are modelled using Smagorinsky’s approach [20].

The computational domain (Figure 2.4) includes the main test compartment with

its vent openings (two pane windows to the exterior), the nearby kitchen (with another

window to the exterior) and hallway. It was considered that the other rooms of the

apartment did not contribute to the fire dynamics and they were therefore not included.

The fuel load in the main compartment was reduced to the most important fuel elements

involved in the growth phase; the sofa, the ignition source and two bookshelves in

the corner behind the sofa. The other fuel items, the computers, coffee table, chairs

and desks also contributed to the fuel load, but this occurred only after flashover, and

are therefore outside the scope of this work. The FDS default reaction (propane) was

used for combustion chemistry. The fire area on the sofa was assumed constant in time

(2/3 of the seating area) and the time variation of the HRR was imposed as a ramp of

the fuel injection. The compartment walls and ceiling were modelled as 10 cm thick

concrete, whereas the compartment floor was assumed to be covered with a carpet. This

simplification of the more complex composition of the real walls is justified by the

inherent inaccuracies of the heat transfer modelling from the hot gases to the walls.

Open boundary conditions were used at the exterior of the compartment. All other

parameters were left with the default values in FDS.

The grid size is one of the most critical parameters in numerical simulations. In the

scope of this work a large number of simulations had to be run in order to converge

toward good agreement with the measured data and it was therefore necessary to use

a sufficiently coarse grid allowing for an efficient use of computational resources.

However, too coarse a grid could induce significant numerical errors in the solution. It

has been proposed [21, 22] that to resolve the fire plume properly, the ratio between

the characteristic fire diameter, D∗, and the grid size should be at least 5 to 10. D∗ is

defined as:

D∗ =
(

Q̇

ρ∞cp T∞
p

g

)2/5

. (2.1)
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Figure 2.4: Computational domain and fuel items used in the FDS simulations

During the growth phase, the order of magnitude of the HRR is 300 kW, and the

characteristic diameter of the sofa is around 0.6 m. Hence the grid size should be

smaller than 11 cm for an adequate plume resolution. This value is used as an order of

magnitude reference. In order to select an adequate grid size, simulation were run with

a wide range of different grid sizes: 5 cm, 10 cm, 15 cm and 20 cm edge cubes. The

HRR was prescribed according to the laboratory experiment Set 1.

Figure 2.5 shows the temperature vs. height distribution at two different locations

in the experimental compartment, one near the burning sofa, and one near the window

away from the fire. See Figure 2.1 for rack locations. The time of comparison is 140 s,

although data are averaged in time (10 s) in order to account for local differences due to

turbulences. The simulations using coarser grids (15 and 20 cm) actually showed better

agreement when compared to the measured data, both qualitatively and quantitatively

than the finer grids (5 and 10 cm). Near the fire (Figure 2.5a), the 20 cm and 15 cm

grids are in agreement between them and reproduce well the lower zone temperatures

and the smoke layer height, but overpredict the temperatures of the smoke layer by

17%. The 10 cm grid underpredicts the smoke layer height by around 15%, but is in

good agreement regarding the smoke layer temperature. The 5 cm grid underpredicts

the measurements by more than 35% at all heights. Away from the fire (Figure 2.5b),

the 10, 15 and 20 cm grids are in reasonable agreement to the measurements, while the

5 cm grid shows divergence both quantitatively (>30%) and qualitatively.

While it is generally accepted for numerical integration that a smaller grid yields

more accurate results, FDS results depend on the size of the numerical grid due to
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Figure 2.5: Comparison of results with different grid sizes at 140 s: a) distribution at the
north wall next to the bookshelf (rack 1); and b) distribution near the window (rack 17).

the LES approximation [23], and also because other approximations depend on the

grid size (radiation and combustion mechanisms, geometry and buoyancy induced

turbulence [22]). This could explain why relatively coarser grids in this case provide

better results. Moreover, the LES Smagorinsky constant used by default in FDS was

calibrated to predict smoke movement in large scale applications where boundary layers

are not well resolved [24] and thus for scenarios different from the one studied here.

Based on the grid dependency study, the 10 cm grid was chosen because it showed

good comparison to the experiments, allowed for fast computations and complied with

the recommendation associated to the characteristic fire diameter [21, 22]. Given the

present results, there are no good reasons to choose a finer grid.

2.5 Hot Layer Average Temperatures

Two distinct levels of detail are analysed. This section predicts the average hot layer

temperature while the next section looks at the distribution of local field temperature and

wall heat fluxes. Comparison at detailed level requires a good agreement at averaged

level first.

As seen in the Set 1 and Set 2 experiments, the blanket significantly modifies

the HRR. A possible HRR of the blanket alone can be estimated assuming quadratic

growth and decay phases. The blanket, made of cotton, weighed 1 kg, hence the

total combustible energy stored in the blanket including 100 ml of accelerant can be

estimated to be around 21 MJ (see chapter 3 or [25]), assuming a heat of combustion
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of 16.5 MJ/kg for the cotton. The resulting peak HRR would be 150 kW. This is

not negligible compared to the measured HRR of the sofa in the early stages, and

should therefore be included in the input HRR for the model. Figure 2.6 shows the

reconstruction HRR of the blanket alone and its addition to the HRR measured in Set 1.

The resulting HRR is referred to as Set 1b. Note that here the data is shifted by 150 s

compared to Fig. 2.3a, so that the ignition occurs at 0 s.
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Figure 2.6: Addition of the blanket to the HRR measured in Set 1 to obtain Set 1b.

The predicted hot layer average temperature using different HRR and comparison

to measurements are shown in Figure 2.7. For the Set 1 HRR, the simulated hot

layer temperature rise agrees with the measured temperature during the first 100 s, but

the decrease in the input HRR between 0 s and 150 s (see Fig 2.3a) results in much

lower (up to 50%) simulated average temperatures after about 100 s compared to the

measurements (Fig. 2.7a). For Set 2, the average hot layer temperature is overpredicted

by about 50% between 25 s and 100 s, and by about 35% between 150 s and 250 s

(Fig. 2.7c). For the Set 1b HRR, the simulated hot layer temperatures are in good

agreement with the measured temperatures (within the instrumental uncertainty) until

200 s into the fire. After that the simulated temperature decreases in contrast to the

measured temperature which rises continually until flashover.

Based on the resulting hot layer average temperature, Set 1 showed to result in

unrealistically low temperatures (which was anticipated by the comparison of the

burning behaviours of Set 1 and Set 2). Set 1b provides a lower bound to the HRR curve

during pre-flashover, while Set 2 proved to be an upper bound. The uncertainty in the

average temperature predictions using HRR bounds is between 0 and 50%, which is
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Figure 2.7: Predicted average hot layer temperatures; a) Set 1; b) Set 1b and c) Set 2.

relatively low. The results presented confirm that if the HRR is well characterized, the

average temperatures can be reproduced with reasonable agreement and without major

effort in small compartments.

2.6 Comparison of Field Variables

The density of measurements in Test One present an opportunity to assess field level

simulations. Figure 2.8 shows the temperature vs. height distributions at different

locations in the experimental compartment using the two bounding HRR curves Set 1b

and Set 2 established as input. Two times, 150 s and 200 s, are chosen arbitrarily for

illustration purposes. In general the simulations are in reasonable agreement with the

measurements, although it can be seen that the further away from the burning sofa the

better the agreement between measurements and simulations.

As expected the lower and upper bound HRR curves result in an upper and lower

bound for the hot layer average temperatures. In the cold layer FDS tends to under-

predict the temperatures even for the upper bound HRR curve. This indicates that the

Dalmarnock fire had a less sharply defined hot layer than estimated by FDS. In accor-

dance with this, it can be observed that the thickness of the hot layer is not significantly

affected by the higher HRR. It only produces higher temperatures in the hot layer.

At thermocouple rack 7, roughly 1.5 m away from the fire, the temperatures are

underpredicted by around 45% at 150 s (Figure 2.8a) using the lower bound HRR

(Set 1b), and by around 40% using the upper bound HRR (Set 2). At rack 11 and

150 s into the fire the simulations with both input HRR curves are in good agreement

with the measured data (Fig. 2.8b), lying within the experimental error in the hot layer,

27



INVERSE MODELLING TO FORECAST ENCLOSURE FIRE DYNAMICS

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

 Dalmarnock Test
 Simulation - HRR Set 1b
 Simulation - HRR Set 2

Temperature [oC]

H
ei

gh
t [

m
]

(a) Rack 7, 150 s

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

 Dalmarnock Test
 Simulation - HRR Set 1b
 Simulation - HRR Set 2

Temperature [oC]

H
ei

gh
t [

m
]

(b) Rack 11, 150 s

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

 Dalmarnock Test
 Simulation - HRR Set 1b
 Simulation - HRR Set 2

Temperature [oC]

H
ei

gh
t [

m
]

(c) Rack 19, 150 s

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

 Dalmarnock Test
 Simulation - HRR Set 1b
 Simulation - HRR Set 2

Temperature [oC]

H
ei

gh
t [

m
]

(d) Rack 7, 200 s

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

 Dalmarnock Test
 Simulation - HRR Set 1b
 Simulation - HRR Set 2

Temperature [oC]

H
ei

gh
t [

m
]

(e) Rack 11, 200 s

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

 Dalmarnock Test
 Simulation - HRR Set 1b
 Simulation - HRR Set 2

Temperature [oC]

H
ei

gh
t [

m
]

(f) Rack 19, 200 s

Figure 2.8: Temperature vs. height distribution at different locations in the compartment at
150 s (a,b and c) and 200 s (d, e and f). Rack 7 (a,d) is located near the fire, rack 11 (b,e) is
located next to the centre table and rack 19 (c,f) is located near the window. See Fig. 2.1
for rack location.

and underpredicting the temperatures in the cool layer by about 40%. At rack 19 and

150 s (Fig. 2.8c), the lower bound HRR curve produces temperatures that lie within

the experimental error in the upper layer, while the upper bound HRR curve results in

overprediction of the hot layer temperature by about 30%. Both HRR curves predict the

hot layer to be about 0.5 m higher than the measured hot layer. At 200 s the upper layer

temperatures at rack 7 are overestimated (although very close to the experimental error,

Fig. 2.8d) when using the upper bound HRR, and underestimated by around 35% when

using the lower bound HRR curve. The lower layer temperatures are underestimated

by around 50% for both input HRR curves. At rack 11 temperatures simulated with

the lower bound HRR curve are underpredicted by less than 20% in the hot layer

(Fig. 2.8e), having almost identical shape as the measured distribution. With the upper

bound HRR curve as input, the temperatures at rack 11 are overpredicted by about 25%

in the hot layer, but underpredicted by about 35% in the cool layer, thus indicating

higher temperature differences between hot and cool layer. Near the window, at rack

19 (Fig. 2.8f), the temperatures (specially of the hot layer) are in good agreement with

the lower bound HRR as input, although the predicted hot layer height is around 0.5 m
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higher than that observed. Using the upper bound HRR curve for the simulation, the

hot layer temperature is overpredicted by about 40%, which is in accordance to the

overprediction by around 40% of the hot layer average temperature resulting from the

upper bound HRR curve at 200 s.

In addition to gas phase temperatures, the simulated wall temperatures and wall heat

fluxes are compared to the measurements. Figures 2.9a and 2.9c show the distribution of

wall temperature at the back wall that separated the fire compartment from the kitchen

at 150 s and 200 s, respectively. Figures 2.9b and 2.9d show the distribution vs. height

of heat fluxes at the same wall.
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Figure 2.9: Wall temperature vs. height (a and c) and Heat flux vs. height (b and d)
distribution on the back wall of the fire compartment.

Using the lower bound HRR curve, the wall temperature is underpredicted by about

20% at 150 s, and within or very close to the uncertainty induced by the experimental

error at 200 s. For the upper bound HRR curve the simulated wall temperature lies

within the experimental error at both times. This apparent advantage of the upper bound

HRR curve is contradictory to the corresponding results for heat fluxes to the wall.
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While the lower bound HRR curve produces heat fluxes in the upper layer close to

the bounds of experimental error at 150 s, the upper bound HRR curve overpredicts

heat fluxes in the upper and lower layer. Figure 2.9d shows that at 200 s the heat

flux predicted with the lower bound HRR curve is in reasonable agreement with the

measurements, both qualitatively and quantitatively with the hot layer predictions almost

within the experimental error. The upper bound HRR curve produces overpredictions of

the heat fluxes by more than 90%.

Figure 2.10 shows the comparison of the distribution of heat fluxes on the ceiling.

The vertical axis is the heat flux, and the horizontal axis corresponds to the distance

across the main compartment. In Figs. 2.10a and 2.10c, the measurements are taken be-

tween the bedroom wall (south) and the northern wall of the experimental compartment.

In Figs. 2.10b and 2.10d, the measurements are taken between the window (west) and

the kitchen wall (east) in the middle of the room.
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Figure 2.10: Heat flux to the ceiling; a) and c) heat flux vs. the distance across the main
compartment from the window to the kitchen wall in the middle of the room at 150 s and
200 s respectively. b) and d) transversal distribution of the heat flux from the bedroom wall
to the north wall of the experimental compartment at 150 s and 200 s.
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The simulated heat flux to the ceiling agrees well with the measured heat flux

when using the lower bound HRR curve. At 200 s half of the compared locations the

simulations were within the error bounds, and at the remaining locations the heat flux

was underpredicted by less than 20%. At 150 s the comparison between bedroom wall

and northern wall (Fig. 2.10a) shows overprediction of less than 20%, and the shape

of the distribution agrees well with the measurements. Using the upper bound HRR

curve, the heat fluxes to the ceiling are largely overpredicted (over 80%). The better

quantitative results compared to the heat flux to the kitchen wall (Fig. 2.9b) when using

the lower bound HRR curve could be explained by the fact that the radiation from the

flame to the ceiling is damped by the smoke layer, so that the inaccuracy of modelling

the flame geometry and flame emission has a smaller effect on the heat flux.

The difficulty of modelling the near field of the fire on one hand, and the relatively

good agreement of the results away from the fire is consistent with the trend throughout

the chapter and with previous work [9].

2.7 Conclusions

In the present work a detailed account of the a posteriori modelling of Dalmarnock Test

One has been given. Available information was used together with possible HRR curves.

Simulations were then compared against detailed measurements, and input parameters

were adjusted in order to fit the results. It was shown that even with full access to the

measured data it is not easy to satisfactorily reproduce the course of the fire. Although

averaged quantities were in reasonable agreement with the measurements (<10% error

for Set 1b and <50% for Set 2), matching of the simulations with the measurements at

a detailed level provided larger errors (differences between 25% and 50% in the gas

phase temperature and around 20% for wall temperatures and heat fluxes).

Comparison of the field temperatures in the experimental compartment suggested

that far away from the fire FDS is capable of capturing the temperature vs. height

distribution of the gas phase (provided an acceptable HRR has been input), while close

to the fire important differences between simulations and measurements were detected,

both quantitatively (35 to 50%) and qualitatively for both explored HRR inputs. Hot

layer temperatures were consistently overpredicted when using an upper bound HRR
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curve (25 to 40%), and underpredicted when using a lower bound HRR curve (less than

20%). However, it was observed that the cold layer temperatures were underpredicted

by both upper and lower bound HRR inputs. The higher HRR input raised the hot

layer temperatures without significantly increasing the cool layer temperatures, and thus

predicting a more sharply defined hot layer than measured in Dalmarnock Test One.

Although it was possible to construct a range of suitable HRR curves that provided

an upper and lower bound for field temperatures, secondary ignition could not be

achieved robustly and the resulting incapability of predicting fire growth was shown to

be a fundamental constraint to fire modelling.
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3
The effect of model parameters on the

simulation of fire dynamics

3.1 Introduction

The central aspect of fire protection engineering is to understand the dynamics of

compartment fires in order to design built environments where the likelihood of a fire

event is minimized and the protection of its people, content and structure from fire

damage is maximized. Fire safety aims at constantly improving and developing new

response systems for these emergencies. A possibility currently being explored in new

emergency response systems is to combine live sensor monitoring and forecast of fire

development [1]. It is envisioned that the forecasting of fire dynamics in enclosures will

imply a paradigm shift in the response to emergencies, providing the fire service with

essential information about the fire ahead of time [1, 2].

There is an inherent difficulty in predicting fire behaviour since it involves complex

dynamics driven by critical events, such as the ignition of secondary items, flashover,

window breakage, sprinkler activation, etc. Moreover, fires involve mechanisms that

develop in length scales ranging from millimetres to metres, and time scales from
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milliseconds to minutes. Coupled computational simulations of these phenomena (i.e.

CFD) demand extensive computational times that are far greater than the time associated

with the phenomena themselves. Thus, a forecasting emergency response technology

is currently non-existent because, putting aside the level of accuracy attained, the best

available fire simulations predict with a negative lead time, i.e. the fire evolves at a much

faster rate than forecasts can be produced. If comprehensive computational models are

to be used to estimate, forecast and understand fire growth in support of emergency

response, a simple, robust and effective approach is required.

The most promising technology for fire forecasts involves the constant update from

live-recorded data to assist the simulations. If available in real time, sensor data could

in principle be used to train and correct the simulation output. One of the current main

limitations for this technology is in the large number of parameters that are required

in fire models. Many of these parameters are scenario dependent, poorly defined or

unphysical and the majority is associated to large uncertainties. Thus, for the concept of

fire forecast to work and in order to be able to actually predict fire dynamics ahead of

time, it is essential to identify the parameters to which fire modelling is most sensitive,

so that these become the centre of attention of the forecast process.

3.2 Large-Scale Tests and Simulations

Only a few real-scale fire tests in enclosures have been conducted and very few of them

had the required level of instrumentation for field model comparison; the BRE large

compartment test series [3], NIST’s experiments for the World Trade Center (WTC) [4]

and The Dalmarnock Fire Tests [5] to name the most important. All these have been the

objective of fire modelling. The BRE test series were modelled by Pope et al. [6] with

FDS and a reasonable agreement was reached within the context of structural fire safety,

although their post flashover simulations underpredicted the measured temperatures.

The NIST experiments of fire growth were primarily conducted to validate their WTC

simulations with FDS [7]. The Dalmarnock Tests, the most recent, have been modelled

a priori [8] and a posteriori [9] and are the focus of the simulations in this chapter.

The Dalmarnock Fire Tests involved two flats in a 23-storey reinforced concrete

tower in Glasgow (UK) and were conducted in July 2006. Test One was held in a
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two-bedroom single family flat, with the living room set up as the main experimental

compartment as shown in Fig. 3.1. Extensive information on the layout, experimental

setup and outcome of the Dalmarnock fire tests can be found elsewhere [5, 10], but an

overview is included here for quick reference.

Figure 3.1: Layout and sensor distribution of the flat used in the Dalmarnock Fire Tests.

The main experimental compartment was the living room 2.45 m high, 3.50 m by

4.75 m in area, with a window and connected to another room and the hallway. It was

furnished as a mixed regular living room/office. The general layout was such that most

of the fuel was concentrated towards the back wall of the compartment, away from the

window, with a fairly even fuel loading throughout the rest of the room.

A large number of sensors were installed throughout the flat in order to monitor

in detail the fire development [5, 10]. Dalmarnock is the only fire test to date with

an instrumentation density high enough to provide measurements with spatial resolu-

tion suitable for comparison with field models. More than 270 thermocouples were

distributed in the main compartment to measure gas temperatures. 20 video cameras

produced visual recordings which allowed monitoring of the fire development. Other

measurements include light extinction, gas velocities at the opening, smoke detectors,

temperature and heat fluxes on the walls and monitoring of the structural response of

the building.

The fire in the Dalmarnock Test One was initiated at the sofa near the corner away

from the window of the fire compartment (see Fig. 3.1). The sofa fire grew and after

275 s ignited the plastic boxes on a bookshelf standing about 1 m away. Once the

bookshelf caught fire and flames spread vertically, the smoke layer descended rapidly

to the ground and flashover took place at 300 s. At 800 s the compartment window was
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purposely broken from outside and led to a change in the ventilation conditions. Finally,

1140 s into the fire, the fire brigade intervened and extinguished it.

Two sets of CFD simulations have been carried out regarding the Dalmarnock Fire

Tests. Before the tests actually took place, a round robin-study was conducted with the

objective of assessing the capability of blind predictions of real fire scenarios [11]. The

output from the simulations of the participating teams scattered over a wide range of

values and no consistency between simulations and the measurements was established

beyond mere qualitative trends. The results showed that blind a priori simulations of

complex scenarios are not accurate and thus that fire forecasts using these tools alone

are not reliable. A posteriori simulations using FDS version 4 aided by the experimental

measurements were carried out after the tests [9]. These show that even when full access

to measurements is given, it is remarkably difficult to reproduce the spatial patterns and

the different stages of fire development to a satisfactory level of accuracy.

In this work, further a posteriori simulations using FDS version 4 have been carried

out using the experimental measurements. The objective is to find a set of model

parameters that allow good reproduction of the pre-flashover fire. In the process of

attaining accurate results, it is possible to identify the variables to which the output

is sensitive and those parameters that have a minor effect in the result. This sets

a framework for the development of simpler models that could potentially achieve

positive lead times within the required levels of precision.

3.3 Fire Dynamics Forecast and Model Parameters

Fire dynamics are fundamentally different during the pre- and post-flashover phases of

a fire. The dynamics of each phase is thus associated to different modelling parameters.

This difference suggests splitting the problem in two parts.

3.3.1 Pre-flashover Fire

During the pre-flashover period the fire is growing and localized, i.e. only a few items

within the compartment are burning and the production of pyrolyzates is the limiting

step [12]. Fire growth is generally driven by flame spread over the initially burning
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item or secondary ignitions of surrounding objects. Eventually, if sufficient objects are

burning, flashover could take place. From the point of view of fire forecast, knowing

the flame spread and which of the items in the room will ignite next, and the time of

this ignition allows predicting the time to flashover. Secondary ignition is controlled by

the heating of material surfaces by the flame and the hot layer. Thus, if the location of

the fire and the rate of heat release could be estimated based on sensor data (e.g. from

thermocouples and heat flux gauges on the walls and ceiling of the compartment) then

once the flame location and height is known, the heat fluxes to surrounding surfaces

and their temperature evolution could be calculated. This would allow prediction of

the time to ignition of different items. This work studies the sensitivity of simulated

surface temperatures and incident heat fluxes during the growing fire phase to different

parameters.

3.3.2 Post-flashover Fire

Once flashover has occurred the fire is no longer localized, and combustible gases fill

the entire compartment. They will burn when they find the right conditions of oxygen

concentration and temperature.

Post-flashover fires are ventilation controlled, and thus from the point of view of fire

forecast, knowing the ventilation conditions is essential for accurate predictions. One

of the most challenging parts is that the fire could lead to window breakage that could

modify substantially the fire behavior but are difficult to predict with current tools. The

effect of fire parameters during post-flashover stage are beyond the scope of this work

and will be subject of future studies.

3.3.3 Model Parameter

The most important input variable to fire simulations is the evolution of heat release

rate (HRR) with time [13, 14]. However, in real fires the HRR is seldom available and

can only be estimated at best. Only experiments conducted under controlled laboratory

conditions provide measurements of HRR evolution. Current fire modelling tools

provide good predictions of the thermal effects of a fire (e.g. the resulting thermal

environment) but the predictions of the fire development are poor (e.g. flame spread and
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fire growth). The proper prediction of the HRR evolution is therefore among the first

priorities of a fire modeller studying real fire development. The effect of the modelling

parameters to predict the HRR evolution is studied here.

In general terms, there are three different types of parameters that can be varied in a

CFD simulation. The first type consists of parameters related to the boundary conditions,

such as geometry, openings and the location of solid items. These parameters are the

basis of any simulation and in principle are determined by the fire scenario that is

to be modelled. Thus their uncertainty is related directly to the confidence in the

known details from the scenario geometry. The second type consists of the parameters

related to physical properties of the fuel packages and other solid surfaces such as

thermal inertia, ignition temperature, heat of combustion, surface emissivity, etc. In

theory, these parameters can be experimentally measured or determined via empirical

correlations, but in practical terms the associated uncertainty can be very large creating

a wide range of possible values. Mathematical and computational parameters comprise

the third type of parameters and generally depend on the model being used. In the

case of LES, the grid size, the Smagorinsky constant and others belong to this group

of parameters [15]. These parameters are related to mathematical approximations

and the solution method of the particular model. Nevertheless, variation of those

parameters affects the outcome of the computations. In principle, their values should

be determined based on computational and mathematical criteria alone and calibration.

These parameters have been the focus of many studies, e.g. Wen [16].

This paper focuses mainly on the effect of the second type of modelling parameters,

the material properties, but the other types are also investigated.

3.4 Results of Sensitivity to Model Paramters

The results of simulating the Dalmarnock Fire Test One are presented in this section.

Simulated gas phase temperatures are compared to the measurements from ignition to

250 s (before flashover), and surface temperatures on the bookshelf next to the sofa

obtained from simulations for different parameter values are presented.
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3.4.1 Ignition Source

A typical love-seat sofa acted as an ignition source for the Dalmarnock Fire Test. It

was ignited using a waste paper basket standing adjacent to it. A cotton blanket was

placed over the armrest of the sofa with one part hanging inside the basket. Over both

the basket and blanket, 300 ml of heptane were poured to ensure ignition.

Prior to the large-scale test, a sofa replica was burned under laboratory conditions in

a furniture calorimeter [17]. Figure 3.2a shows the HRR measured during the laboratory

test. This test provides an estimation of the initial fire evolution in the Dalmarnock Test

and the measured HRR is used as a first step towards the characterization of the ignition

source. The main difference between the laboratory test and the actual Dalmarnock

fire was that in the laboratory the heptane soaked blanket was not included. The HRR

resulting from the burning blanket and the heptane was modelled following a fast

t-squared behaviour (see Fig. 3.2a) and then added to the experimental HRR. In addition

to the fast fire assumption, the total energy released by the blanket is forced to match

the energetic value according to Eq. (3.1):

∫
HRRbl k dt = mbl k∆hc,blk +mhep∆hc,hep , (3.1)

where mblk is the initial mass of the blanket (estimated at 1.2 kg), hc,bl k its heat of

combustion of cotton (16.5 MJ/kg [18]), mhep is the mass of the heptane added to the

blanket (0.07 kg for the estimated 100 ml poured over the blanket [5]) and hc,hep is

the heat of combustion of heptane (44.5 MJ/kg [19]). A decay function of the form

(t − t0)2 was introduced to complete the consumption of the blanket mass, where t0 is

the burnout time and set to 400 s. The resulting fast t-squared fire for the blanket alone

can be seen in Fig. 3.2a.

Camera footage of the Dalmarnock Test can be used to estimate the peak value of

the HRR and support these approximations. The Dalmarnock fire spread quickly to the

blanket and flames of about 1 m in length were observed at the location of the blanket.

Using Heskestad’s correlation, the HRR of a fire can be calculated from its size [20] as,

Q̇ =
(

L+1.02D∗

0.23

)5/2

(3.2)
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where Q̇ is the HRR, L the flame length and D∗ the equivalent fire diameter. The

blanket occupied an area with an equivalent diameter of 0.6 m. The HRR of a fire of

this diameter corresponding to the observed 1 m high flames is of the order of 150 kW,

in accordance with the peak HRR resulting from the fast t-squared assumed here.
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Figure 3.2: a) Laboratory measured HRR of the basket and sofa fire, next to the approxi-
mated calculation for the blanket fire. b) Upper layer temperature during the growing phase
(with blanket) comparing simulations and Dalmarnock measurements [5].

Using the combined measured and blanket HRR and applying it over the sofa

area, the predicted average temperature of the upper layer in the room is in reasonable

agreement with the measurement. A comparison between the simulated and measured

gas temperatures is presented in Fig. 3.2b. The agreement lasts up to 200 s, then the

simulated temperature decreases due to the predicted burnout of the basket and blanket

fires and raises rapidly at 250 s when the bookshelf ignition and subsequent flashover

is predicted (the rise is not shown in the figures). This dip was not observed in the

Dalmarnock experiment itself. Thermocouples located between the basket and the

bookshelf next to the sofa at a height of 0.5 m show considerably higher temperatures

(approx. 200oC higher) than those obtained in the simulations. This suggests that some

fuel in the area was burning at that time, but there is no evidence to support this, since

the area was not covered by CCTV cameras.

3.4.2 Fire location, fire area and heat of combustion

The total HRR is an important variable but the fire location and flame size and shape

are as well important to predict the ignition of secondary objects and the growth phase.

The diameter and height of the flame have a direct influence on the radiative heat fluxes

42



CHAPTER 3 WOLFRAM JAHN

to surrounding objects and on the air entrainment and thus on the convective heating

of objects in the upper layer. For a given HRR, the pyrolyzate production rate per unit

area affects the flame height by directly changing the buoyant strength of a fire and thus

affecting air entrainment, burning rate and heating [12]. The HRR Q̇ can be expressed

as,

Q̇ =∆hc · A ·m′′
f , (3.3)

where ∆hc is the heat of combustion of the fuel, A is the fire area, and m′′
f is the

pyrolyzate mass flow per unit area. For a fixed HRR, the mass flow increases either due

to a decrease in the area or due to a decrease in the heat of combustion.

As seen in visual recordings during the growth phase of the Dalmarnock fire, the

flames were not distributed over the entire sofa, but stayed predominantly in one third

of the sofa near to the basket. Decreasing the fire diameter, but maintaining the imposed

HRR, will then give rise to prediction of a higher flame according to Eq. (3.2). This

increase in the flame height and the concentration of released heat on a smaller area

changes the relationship between flame and surfaces from an optical point of view.

Figure 3.3 shows the effect of changing the fire area (while keeping the HRR the same)

on the upper layer temperature and the surface temperature of the nearby bookshelf.

It is seen that the effect of the fire area is important on the surface temperature of the

surrounding objects (Fig. 3.3b) while the effect is minor for the average temperature of

the upper layer (Fig. 3.3a).

0 50 100 150 200 250
0

50

100

150

200
 Dalmarnock
 Entire sofa
 Reduced fire area

G
as

 te
m

pe
ra

tu
re

 [o C
]

Time [s]

(a)

0 50 100 150 200 250
0

50

100

150

200

Su
rfa

ce
 te

m
pe

ra
tu

re
 [o C

]

Time [s]

 Entire sofa
 Reduced fire area

(b)

Figure 3.3: Effect in the predictions of changing the fire area while keeping the HRR the
same. a) average upper layer temperature with comparison to Dalmarnock measurements [5]
b) bookshelf surface temperature of the bottom part of the bookshelf.

Given the importance of locating the origin of the HRR, the effect of separating the
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HRR measured in the laboratory between the basket and sofa portions and applying

them in their respective locations was investigated. The decay from initial conditions to

the growth inflection at 150 s seen in Fig. 3.2a is attributed to the burn-out of the basket.

If this HRR is deducted from the measurement what is left fits well to a t-squared fire of

slow growth. This is attributed to the burning of the sofa alone. The basket HRR can be

separated from the measurement and be distributed over a small area on the right side

of the sofa representing the basket location. The blanket fire is added to the sofa fire

and both are applied over an area of 1/3 of the sofa’s total horizontal surface. Figure 3.4

shows the effect of separating the HRR between the basket and the sofa on the upper

layer temperature and the surface temperature of the nearby bookshelf. The separation

of the two fires provides temperature predictions in the upper layer 20oC higher during

the first 30 s, which is not a significant change. However, the difference is 40oC higher

in the surface temperatures of the bookshelf which is important for the predictions of the

ignition time of the bookshelf material. The significant effect of separating the basket

fire is due to the small area of the basket and the relatively high HRR peak contributing

to produce flames up to 1.3 m and so changing the geometry of the flame.
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Figure 3.4: Effect of separating the total HRR into the basket and the sofa fires: a)
temperature of the upper layer and comparison to Dalmarnock measurements [5] and b)
surface temperature of the bookshelf.

Another parameter that affects the flame height and the fire environment is the

heat of combustion of the fuel, ∆hc , used in the simulation. Decreasing the heat of

combustion while keeping the HRR and the fire area fixed, results in an increase of the

pyrolyzate mass flow per unit area (and vice versa), as expressed in Eq. (3.3). However,

the Froude number, and thus the buoyant strength of the fire, is only affected weakly
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Table 3.1: Predicted flame heights on the sofa for different fires while keeping the HRR
constant. Comparison with the observed values in the Dalmarnock Test One.

Simulations
60 s 150 s 250 s

flame height (m) flame height (m) flame height (m)

Fire over entire
0.4 0.6 0.4sofa area

Fire over 1/3
0.9 1.1 0.7sofa area

Fire over 1/3

0.8 1.1 0.6sofa area and
separated basket

Fire over 1/3

1.3 1.3 0.8sofa area and
lower hc

Observed in
∼ 1 ∼ 0.8 ∼ 0.8Dalmarnock

by the heat of combustion and thus a small effect is expected. The effect of changing

this and also the fire area has been explored and the results are presented in Table 3.1

which shows the predicted flame heights for different sofa fire scenarios keeping the

HRR fixed. The effect of changing the heat of combustion by more than 100% increases

the predicted flame height by approx. 20-30%. Simulation with the lower heat of

combustion shows that the change in the heat of combustion does not translate into a

significant change in the time to ignition of the bookshelf.

3.4.3 Thermal and ignition material properties

The objects receiving incident heat flux from the fire will heat up according to their

material properties [21]. In the Dalmarnock experiments, the bottom shelf of the

bookshelf next to the sofa contained plastic boxes. Due to the small thickness of their

walls the boxes can be considered as thermally thin, and therefore the parameter of

interest for ignition predictions is the product of the thickness (δ), density (ρ) and

specific heat (c) [22]. The rate of change in the temperature of the object is proportional

to the incident heat flux [22]:

ρδc
dT

dt
= q̇ ′′

net (3.4)

where the net heat flux is the difference between the incident heat flux and the re-

radiation:

q̇ ′′
net =αq̇ ′′

i n −σεT 4
w . (3.5)
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Equation 4 can be integrated over time yielding the expression for the surface tempera-

ture as a function of time. The larger the thermal inertia ρδc is, the longer it takes for

the surface to respond to the heating, and the peak temperature is not as high as it is for

lower thermal inertias.

Figure 3.5 shows the surface temperature for different thermal inertia (ρδc). It

shows that varying this parameter by 50% (from 1 to 0.5 kJ/m2K) can produce important

differences in the temperature of the surface (up to 40%). Since the material properties

of nearby objects or fuel packages are normally not known accurately, the sensitivity to

this parameter is very important.
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Figure 3.5: Effect of surface ρδc on the predicted bookshelf temperature at different
heights a) 0.1 m above floor b) 1.5 m above floor.

Under Kirchhoff’s law [22], the emissivity of a surface represents the fraction of

the total radiative power that the surface emits and absorbs. For relatively cold surfaces

heated by a nearby fire, the absorption component dominates. Thus, this parameter

has a double effect on the surface temperature, by establishing the fraction of incident

radiation absorbed and the fraction re-radiated back into the gas phase.

A comparison of surface temperature for different emissivities is presented in

Fig. 3.6. Near the flame, at 0.5 m above the floor, the variation of the emissivity from

0.4 to 1 changes the surface temperature by more than 60% during the entire growth

phase.
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Figure 3.6: Effect of the surface emissivity parameter on the predictions of the bookshelf
temperature at different heights: a) 0.1 m above floor b) 1.5 m above floor.

3.4.4 Flame radiative fraction

In LES calculations the local temperatures are averaged over the entire volume element,

which could produce an important underprediction of the flame temperature when the

elements are not small enough [15]. To avoid the subsequent strong underprediction of

heat losses by radiation, in FDS (and other CFD codes) the flame radiation is calculated

as a fixed fraction of the HRR. Although values around 35% are generally accepted to

be the radiative fraction, this is an empirical finding and significant deviations from this

value are abundant. Figure 3.7 shows the impact that a variation of this parameter has

on the surface temperature of the bookshelf. As the radiative fraction is decreased from

0.35 to 0.0, the predicted peak temperature decreases from 225 to 150oC. When the

radiative fraction is increased from 0.35 to 0.7, the predicted peak temperature increases

from 225 to 330oC. Although the range considered for variation of this parameter (0.0

to 0.7) is somewhat extreme and includes all physically possible values, these results

imply that the parameter has a significant effect for the prediction of the time to ignition.

3.4.5 Heating from the smoke layer

Radiation and convection from the smoke in the upper layers of the compartment heat

up the objects in the room. Convective heating is largely restricted to the upper layers

but radiation can heat up objects at lower layers. The heat feedback from the smoke

layer might not be negligible and is investigated here in the context of the Dalmarnock

fire.
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Figure 3.7: Effect of the radiative fraction parameter in the predicted temperature evolution
of the bookshelf at different heights. a) 0.1 m above floor b) 1.5 m above floor.

In order to study the effect of the smoke layer on the heating of surrounding objects,

a simulation was conducted where the smoke easily escapes the compartment through a

hole on the ceiling. This is not a realistic scenario but allows studying the case where all

the smoke is removed. The predicted surface temperature is compared to the case where

smoke accumulates. Figure 3.8 shows the surface temperature of the bookshelf at 0.5

and 1.5 m above the floor with smoke layer and without smoke layer. At 0.5 m, i.e. the

height of the basket, there is no perceivable difference between the two cases, whereas

at 1.5 m above floor the temperatures differ approximately 10%. Since the bookshelf

is tall and its upper parts are in direct contact with the hot smoke at 1.5 m, part of that

difference can be attributed to convective heating from the smoke. It can be concluded

that radiative heat feedback from the smoke layer during growth is not important in the

Dalmarnock scenario for the ignition of objects outside the smoke layer, but that the

convective part accounts for a significant increase in temperature of objects within the

smoke layer.

Considering that in FDS the radiation from the flame is modelled as a fraction of

the HRR and thus it is decoupled from the radiative properties of the flame, it seems

natural that soot production would not affect considerably the predicted incident heat

flux. Figure 3.9 confirms this by showing that surface temperatures on the bookshelf

do not vary by more than 7% while varying the soot yield produced in the combustion

reaction in a range between 0.1 and 0.3.
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Figure 3.8: Effect of the smoke layer built-up in the predicted temperature evolution of the
bookshelf. a) 0.1 m above floor b) 1.5 m above floor.
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Figure 3.9: Effect of the soot yield parameter in the predicted temperature evolution of the
bookshelf. a) 0.1 m above floor b) 1.5 m above floor.

3.5 Conclusions

It is widely accepted that the HRR is an essential variable in fire simulations. However,

its value and evolution are rarely known beforehand in accidental fires. Then, the

HRR must be estimated using fire dynamics, the lay-out of the scenario and material

properties. When these parameters are studied, other parameters become also important

in predicting fire dynamics. During the growth phase, the time to ignition of secondary

items is important for predictions of fire spread and time to flashover. Radiation from

the flame is to be one of the most important mechanisms for the ignition of nearby

objects. The location and area where the heat is released, and the height of the flame, are

important for flame radiation calculations. A smaller fire area and a higher pyrolyzate

production rate for the same HRR will produce longer flames.

The associated sensitivities of the upper layer temperature and surface temperature
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predictions have been quantified for the scenario of the large-scale Dalmarnock Test

One. The results show that the global HRR in the compartment is a good input to

predict the average temperatures in the compartment but produced poor prediction of

the time to flashover. Simulations of the fire growth are significantly sensitive to the

location of the HRR, fire area, material thermal properties, surface emissivity and flame

radiative fraction, whereas the simulations are relatively insensitive to changes of the

heat of combustion (while keeping the HRR constant), the soot yield and the heating

from the smoke layer.

Since the material properties of nearby objects, surfaces and fuel packages are

normally not known accurately, the sensitivity to this parameter is very important.

Predictions of secondary ignition, fire spread and thus of time to flashover can depend

strongly on the appropriate estimation of these material and fire parameters.

The development of fire forecasting methodologies in support of the emergency

response must focus on the variables identified here as important. The live sensor

data could be used to update and provide somehow best estimates of these parameters

and to reduce the associated uncertainty. These parameters could then be used in the

computational predictions. Since heat feedback from the smoke layer during fire growth

is not significant for objects outside the smoke layer, the results here suggest that for

predictions of secondary ignition and flashover, fire CFD modelling may not be justified

in terms of accuracy, and other, simpler and computationally cheaper models could be

used to accelerate computational fire forecasts.
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4
Forecasting Fire Growth using an

Inverse Zone Modelling Approach

4.1 Introduction

The human attraction for the prediction of future events permeates deep into science and

technology, where some disciplines have emerged to provide the scientific knowledge

capable of forecasting the dynamics of non-trivial systems. Astronomical objects, tides

and weather are the most common examples.

It is envisioned that the forecasting of fire dynamics in enclosures will lead to

a paradigm shift in the response to fire emergencies in buildings, providing the fire

service with essential information about the development of the fire with some lead time

(i.e. seconds, minutes or hours ahead of the event) [1]. This technology is currently

non-existent because available fire simulation tools cannot predict fire growth in a fast,

precise and robust manner.

There is an inherent difficulty in predicting fire behaviour, since it involves complex

dynamics driven by critical events such as window breakage, flashover, sprinkler

activation, etc., and feedback interactions. Even flame spread over a single burning
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item involves closely coupled physical processes both in the gas phase and in the solid

phase. Although a recent attempt of modelling flame spread from first principles has

shown good agreement with experimental observations [2], this can only consider

scenarios of very limited size (flame length in the order of 10 cm) due to the very

extensive computational time it requires. Natural fires in real-size enclosures involve

mechanisms that develop in length-scales ranging from micrometres (flame thickness)

to metres (compartment size), and time-scales from milliseconds (chemistry) to minutes

(burnout) [3]. Thus, coupled computational simulations from first principles of fire

growth would demand extensive computational times far greater than the time associated

with the phenomenon itself.
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Figure 4.1: Conceptual representation of the data assimilation process and the sensor
steering of model predictions even when fundamental changes take place in an evolving
emergency scenario.

If comprehensive computational models are ever to be used to forecast fire growth

in support of the emergency response, a more simple, robust and effective approach is

required. This will result in more approximations and thus in a loss of detailed informa-

tion about the underlying physical processes. It is thus proposed to incorporate sensor

data into the model in order to recover the information lost by the approximations [1].

This is a concept widely used in weather forecasting under the label of data assimilation.

The concept of data assimilation basically consists of using computer models of some

complexity that are steered by updated sensor observations of the ongoing event as it

develops.

The system aims to provide useful predictions even when fundamental, unpre-

dictable, changes take place in the evolving emergency. For example, if a window

breaks during a building fire, the flame dynamics are significantly changed, and there-

fore the model should respond to this change by readjusting within some time its
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predictions to the new conditions. This concept is demonstrated in Fig. 4.1, where

sensor data is assimilated to steer the simulations of the flame dynamics.

An important step of data assimilation is to find fundamental parameters that govern

the dynamics, and that do not change over a certain period of time (these are the

invariants of the problem). If these invariants are estimated correctly, it should then be

possible to predict fire behaviour until a critical event takes place, when the invariants

change and estimations need to be re-adjusted.

Parameter estimation and inverse modelling is widely used in engineering appli-

cations, and various examples can be found in the fire science literature. Richards et

al. [4] use a database of pre-run models to estimate fire location and fire growth. They

use the same zone model to generate the data for comparison, and analyze the influence

of measurements and modelling errors. Leblanc and Trouvé use a zone model to predict

the heat release rate (HRR) time-history based on observations generated using the same

model [5]. While they are able to closely reproduce the HRR past history, their work

does not address how to produce a forecast of future events. Wang et al. [6] predicted

the fire location using temperature data from several sensor arrays distributed in the fire

room. Cowlard et al. used a simple flame spread correlation and assimilated temperature

observations and flame front measurements to predict upward flame spread [7]. They

were able to estimate input parameters for the empirical correlation and make super real

time predictions of upward fire spread. Jahn et al. [8] propose a tangent linear approach

to estimate fire growth parameters using a computational fluid dynamics (CFD) fire

model. Koo et al. [9] used measurements from a fire test experiment to progressively

steer fire simulations towards the effective value using a Monte Carlo approach with a

set of parameters that was used for random generation of scenarios. While they were

able to reproduce past observations of temperature, they could not link the parameters

of the model to the physics of the full scale fire test, which limits the forecast of future

events to statistical considerations.

In the present work the problem of estimating invariant parameters for the prediction

of fire growth is investigated using data assimilation into a simple zone model. The

estimated parameters are then input into the model to produce a forecast. In order to

demonstrate the concept, a simple compartment fire is chosen and only the fire growth

stage before flashover is investigated. The scenario includes a small fire that ignites
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locally at a certain point (e.g., started by an electrical failure or arson) and flames spread

radially. A CFD based fire model (Fire Dynamics Simulator version 5.1.6 [10]) is used

to generate the observations of the true fire. A simple two-zone model is used to predict

the fire based on comparison to the observed temperature and height of the hot layer.

Optimization of the estimations uses a gradient-based method and the gradient of the

cost function is computed using the tangent linear approach [8].

4.2 Fire Modelling

Fire dynamics in natural fires involves coupled solid phase processes (heating, pyrolysis

and burning) and gas phase processes (turbulence, radiation and flame dynamics). Two

main types of fire models can be identified, zone and CFD models. Zone models are

based on the assumption that the fire compartment can be divided into two homogeneous

layers, a hot upper layer and a cold lower layer. While the solution to a zone model is

very fast, the accuracy of the results is limited by the simplifying assumptions where

a large part of the underlying physics is treated in a simplified manner. Heat and

mass transport within a layer is assumed to be much faster than the transport between

layers, thus energy and species can be assumed to be homogeneously distributed. The

fire and transport of energy and mass from the cold to the hot layer are defined by

empirical correlations that are intended to reproduce in a simple manner the complex

fluid mechanics involved.

CFD models consider and couple the important fundamental mechanisms. Their

main drawback is that when applied to real-size compartments, the computational

requirements outsize the available resources. However, both types of fire models are

restricted by the need for a prescribed fire growth curve as input.

4.3 Modelling Approach

4.3.1 Two-Zone Model

The fire model used to produce forecasts is based on the two-zone model with floor

leak proposed by Zukoski [11]. There are no vents in the compartment. A transient
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mass balance is stated for the cold layer, assuming that its temperature does not change

significantly,

ρa
dVl

dt
+ṁe +ṁp = 0, (4.1)

where t is time, ρa is the air density at ambient temperature, Vl is the volume of the

cold layer (lower layer), ṁe is the mass flow through the floor leak, and ṁp is the mass

flow of the fire plume.

The flow through the floor leak (ṁe) can be obtained from the energy balance of

the whole compartment, and is expressed in terms of the mass flow of the fire plume

and of the quotient between plume temperature (Tp) and ambient temperature (Ta):

ṁe = ṁp
Tp −Ta

Ta
. (4.2)

Heskestad’s correlation [12] for plume entrainment is used to estimate the mass flow

of the fire plume,

ṁp =C

(
ρ2

a g

cp Ta

)1/3

Q̇1/3(H0 −h(t ))5/3, (4.3)

with the constant C , the entrainment coefficient, depending on the geometrical relation-

ship between the room boundaries and the fire. Q̇ is the HRR of the fire, g is gravity, cp

is the specific heat of air, Ta is ambient temperature, h(t ) is the height of the interface

between the hot layer and the cold layer measured from the floor at time t , and H0 is

the height of the compartment.

The hot layer temperature was obtained by means of a mass balance of the hot layer

(upper layer),

ρu
dVu

dt
+Vu

dρu

dt
= ṁp , (4.4)

where ρu and Vu are the hot layer density and volume, respectively.

Substituting Eq. (4.1) in Eq. (4.4) and rearranging using the condition Vl +Vu =
constant and Eq. (4.2), an expression for the change of the hot layer density in time is

obtained,
dρu

dt
= 1

Vu

(
ṁp −ρu

ṁp Tp

ρaTa

)
, (4.5)

where Tp is the plume temperature, which is obtained assuming that all the released

energy (Q̇) is used to heat the plume. The initial state of the system, y0, is ambient
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temperature in the entire compartment and a hot layer height equal to the height of the

compartment.

By integrating Eqs. (4.1) and (4.5) together with (4.3), the temperature and height

of the hot layer in time can be obtained for a given HRR curve in time. This is denoted

by Mi (y0,θ) which is the forward integration model at time ti with parameters θ and

initial state y0.

4.3.2 Heat Release Rate

Although important advances have been made [2], the prediction of fire growth and

flame spread are still research topics and the state of the art is not yet satisfactory.

A study published in 2007 investigated the capability of a fire field model (FDS [10])

to predict fire growth using a grid size comparable to grid sizes typically used in fire

modelling applications, concluding that the predicted rate of fire growth is not reliable

due to the crude approximations in the pyrolysis and combustion submodels [13].

In the present work, fire growth is modelled by decoupling the solid phase processes

from the gas phase based on the assumption that the radius of the burning area of an

isotropic fuel grows at a constant rate. This is a reasonable assumption for early fire

development when flames do not penetrate into the hot layer and heat feedback from

the flames will not accelerate flame spread [14]. The heat release rate (HRR) of a fire

can be expressed as a function of the spread rate r and time t as follows:

Q̇ =∆hc ṁ =∆hc ṁ′′
f r 2π(t − t0)2, (4.6)

where ∆hc is the heat of combustion of the fuel, ṁ′′
f is the mass flow of fuel per unit

area, and t0 is a time delay. It is common in fire engineering to define a fire growth

parameter α=∆hc ṁ′′
f r 2π, in order to write the HRR as a quadratic function of time,

Q̇ =α(t − t0)2. (4.7)

This αt 2 dependency has been validated for many different fire scenarios. It can be

shown that α is relatively insensitive to changes in ∆hc and ṁ′′
f compared to changes in

r 2, and the range of possible values of r in real fires is much wider. Thus the correct
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estimation of α relies on a good estimation of the spread rate.

4.4 Inverse Modelling

4.4.1 Framework

Once a fire has been detected and observations are collected during the assimilation

window, the relevant invariants can be estimated and a forecast of the fire development

can be made without solving the complex interactions between gas and solid phase.

The assimilation window is the period of time where observations are received and

considered for the optimization step. As time goes by, new observations come in,

providing more information on the history of the fire development, and the invariant

parameters can be estimated with higher accuracy. When invariants have converged,

the extent of the lead time depends only on when the next critical event will take

place. A critical event (e.g. window breakage, flashover) will fundamentally change

the invariants governing fire growth (e.g. change in boundary conditions, secondary

ignition), and thus constitutes an upper limit to predictability.

The entrainment coefficient (C in Eq. (4.3)) has been shown to vary significantly

with the fire characteristics [15], and it is therefore necessary to estimate this parameter

for each specific fire scenario. The invariants of interest here are thus the spread rate

(implicitly in α in Eq. (4.7)) and the entrainment coefficient. These invariants are

separated from the physical variables of the processes involved and will be an input

for the forecast zone model. Additionally, a delay time constant t0 (see Eq. (4.7)) is

estimated, in order to account for the time it takes for the hot gases to travel from the

flame upwards and to mix in the hot layer. This transport time is not considered in

zone models but added here to relax the assumption that combustion products move

immediately into the upper layer. Note that t0 in this context differs somewhat from its

traditional definition of time to ignition.

The problem can thus be represented on the basis of these invariants summarized in

the vector θ:

θ = [α,C , t0] . (4.8)
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In order to be useful in a fire scenario, a forecast has to be delivered with a positive

lead time, i.e. the forecast has to be ready before the event being predicted takes place.

Here, the lead time is defined as the time ahead of the event during which the forecasted

temperature is less than 10% off the true temperature.

4.4.2 Cost Function

Data are assimilated into the model by minimizing a cost function that describes the

distance between predictions and observations. The invariants are then adjusted until

convergence is obtained. The hot layer temperature and height are used in the present

work to be assimilated into the model. The cost function J (θ) is then defined as the sum

over time of the squares of the differences between the model predictions for a given

set of invariants θ and the physical observations yi at time ti ,

J (θ) =
N∑

i=1

[
yi − ŷi (θ)

]T [
yi − ŷi (θ)

]
, (4.9)

where ŷi (θ) is the output of the forward integration model that predicts the state of the

system at time ti . Data is assimilated during a time period between t0 and ti that is

discretized in N time steps.

Thus, the inverse problem that has to be solved can be formulated as the following

minimization problem:

min
θ

J (θ)

s.t. ŷi (θ) =Mi (y0,θ).
(4.10)

4.4.3 Optimization

The minimization problem presented in Eq. (4.10) is non-linear and has to be solved

using a numerical approach. Although the zone model used as forward model in this

case is simple and very fast to run, the methodology presented here is extendable to

more complex fire models that can take considerably longer time to run. Thus gradient

based optimization [16] was chosen to solve the problem of estimating the invariants,

as function evaluations can become very time extensive with more complex forward

models, and including information about the gradient can reduce the number of function
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evaluations necessary to find a minimum [16]. The computation of the gradient of the

cost function (Eq. (4.9)) involves the differentiation of the forward model with respect

to θ, as shown,

∇J (θ) =−2
N∑

i=1
∇Mi (y0,θ)T [

yi −Mi (y0,θ)
]

(4.11)

Algorithmic differentiation [17] of the forward model was used to obtain the deriva-

tive, as this method yields the exact derivative and is relatively easy to obtain for any

existing code.

4.5 Fire Growth Forecasting

The case considered is a radially growing fire starting in the middle of a closed com-

partment with leaks at floor level (see Fig. 4.2), in order to prevent pressure rise in the

compartment. The compartment is of 4 m by 5 m and 2.5 m high. The fuel is well

distributed horizontally over the floor. The true fire grows radially from the initial point

at a rate of 3 mm/s for 150 s, thus reaching a peak of 330 kW at the end of the scenario.

These are deemed to represent realistic values of a typical residential or office fire.

The true fire is simulated using a CFD fire model (Fire Dynamics Simulator version

5.1.6–FDSv5 [10]), which has been shown to provide good predictions of hot layer

temperatures and smoke movement in scenarios similar to the one at hand [18].

Figure 4.2: Snapshot of the CFD compartment fire used for data generation. The dots
represent the sensor locations for temperature.
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Temperature sensors were placed uniformly throughout the compartment (at a den-

sity of about 11 sensors/m3). Figure 4.2 shows sensor locations. The 3D observations

from the sensors were converted to hot layer variables by vertically integrating the tem-

perature field. The hot layer height is determined by a thermal equilibrium between the

continuous temperature distribution and the two zones with average temperatures [10].

The first data considered for assimilation are from 20 s after ignition, and new data are

then recorded every 6 s.
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Figure 4.3: Spread rate (blue line) and entrainment coefficient (red line) for increasing
number of data points in the assimilation window.

Figure 4.3 shows the convergence of the invariant parameters of the model as a function

of the number of observations inside the data assimilation window. The assimilation

process is started with 5 data points, yielding the first estimate of the parameters 42 s

after ignition. As more data points are considered, the estimated spread rate of the

fire converges towards the true value of 3 mm/s. The entrainment constant converges

towards 0.4, which is in the same order of magnitude, but higher than the value of

0.21 proposed by Heskestad [12]. However, the presence of walls nearby changes the

entrainment flow significantly [15], thus leading to conditions different from those of a

free plume.

The predictive capability of the model grows according to the convergence of the spread

rate as shown in Fig. 4.4. While the lead time is of less than 15 s with an assimilation

window of up to 8 data points, it grows significantly with a wider assimilation window.
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Figure 4.4: Lead time of the forecast for growing assimilation window.

Once the estimated spread rate converges to the spread rate of the observed fire (assimi-

lation window of more than 12 data points), the lead time of the forecast reaches 30 s.

At about 130 s the zone model assumptions start to break down, which corresponds to a

critical event (transition from growth phase to fully developed phase). This constitutes

a limit to the predictability of the fire development. Further incoming data (after 100 s)

do not provide new information, and thus do not improve the predictions. A maximum

lead time of 30 s is thus reached with an assimilation window of 13 observations. Note

that the sharp decrease in the lead time for an assimilation window of 11 observations

correlates with the very high estimated plume entrainment for the same assimilation

window (Fig. 4.3).
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Figure 4.5: Forecast at 42 s after five data points are assimilated. The observed data
is shown together with the future development and the forecast of the fire. a) Hot layer
temperature b) Hot layer height c) HRR.

Figure 4.5 shows the forecast of temperature and height of the hot layer and HRR

at 42 s. The assimilation window includes five observations evenly distributed in time

between 19 s and 42 s. The lead time for the temperature is less than 10 s. Although

the prediction at 42 s is similar to the true fire, the forecast diverges rapidly after 50 s

and ends up underpredicting the HRR by more than three times at 150 s after ignition.

The reduced accuracy is due to the sharp descent of the true hot layer at 50 s, as seen in

65



INVERSE MODELLING TO FORECAST ENCLOSURE FIRE DYNAMICS

Fig 4.5b. As a consequence of the poor forecast of HRR, the temperature and height

of the hot layer are poorly forecasted too. Nevertheless, the forecast follows all trends

qualitatively.
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Figure 4.6: Forecast at 66 s after nine data points are assimilated. The observed data
is shown together with the future development and the forecast of the fire. a) Hot layer
temperature b) Hot layer height c) HRR.

Figure 4.6 shows the forecast at 66 s with an assimilation window comprising nine

evenly distributed observations. The forecast is improved significantly compared to the

case with five data points, and the lead time is now 22 s. However, the descent of the hot

layer is overpredicted by almost 30% between 50 and 130 s. The HRR is overpredicted

by 40% at 150 s after ignition.
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Figure 4.7: Forecast at 90 s after 13 data points are assimilated. The observed data is shown
together with the future development and the forecast of the fire. a) Hot layer temperature
b) Hot layer height c) HRR.

Figure 4.7 shows the forecast at 90 s with an assimilation window comprising 13

evenly distributed observations. The growth rate of the fire can be predicted accurately,

and thus the forecast for the HRR is close to the actual true fire growth. The lead time

is 30 s. The best improvement is seen in the temperature and the HRR. The HRR is

overpredicted by only 5% at 150 s after ignition. The descent of the hot layer is still

overpredicted by 17%, although to lesser extent than in shorter assimilation windows.
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4.5.1 Slow Fire

The observations in the previous case come from a radially growing fire that grows at

a rate of 3 mm/s. The corresponding growth factor α of 0.0017 kW/s2 is in the range

of a medium fire as typically occurs with fuel loads such as beds and mattresses [19].

However, the methodology is not limited to a specific case and in the following sections

observations from fires with different spread rates were assimilated into the model.

Fires with a growth factor of around 0.003 kW/s2 are categorized as slow fires.

These fires are typically found in scenarios with densely packed paper products. Using

the same geometrical layout as in the previous case, a slow fire with a spread rate of

1.3 mm/s (α= 0.0032 kW/s2) was simulated with FDSv5. The output was then used as

observations for the assimilation process and the lead times of the resulting forecasts

were analyzed. The first data considered for assimilation were from 30 s after ignition,

and new data were then recorded every 12 s.
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Figure 4.8: Spread rate (blue line) and entrainment coefficient (red line) for increasing
number of data points in the assimilation window.

Figure 4.8 shows the convergence of the invariant parameters (spread rate and

entrainment coefficient) as a function of the number of observations of the assimilation

window. While the spread rate converges to the true value of 1.3 mm/s as the number of

observations increases, the entrainment coefficient, which seemed to settle around 0.2,

starts oscillating around 0.35 for more than 12 observations, although staying within

reasonable bounds (Heskestad suggests 0.21 for a free standing plume [12]).
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Figure 4.9: Lead time of the forecast for growing assimilation window.

Figure 4.9 shows the lead time of the forecasts as function of the number of observa-

tions in the assimilation window. Reasonable lead times are reached with 7 observations

or more. The peak value for lead time is 80 s with 12 observations (160 s), allowing

for forecasting the compartment conditions until 240 s after ignition. The two zone

assumption starts to break down around that point, so that new incoming data (after

160 s) cannot improve the lead time of the forecast.
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Figure 4.10: Forecast at 160 s after 12 data points are assimilated. The observed data
is shown together with the future development and the forecast of the fire. a) Hot layer
temperature b) Hot layer height c) HRR.

The forecasts of smoke layer, average hot layer temperature and HRR are shown in

Fig. 4.10 for an assimilation window with observations between 30 s and 160 s. The

forecasted temperature (Fig. 4.10a) is within 10% of the observed temperature until

about 240 s, yielding a lead time of 80 s as indicated in Fig. 4.9. The smoke height,

shown in Fig. 4.10b, is forecasted correctly (within 15% of the observations) for about

45 s. Figure 4.10c shows that the HRR is overpredicted slightly.

It is important to point out that when a zone model is used as forward model, very

slow fires, such as the one at hand, are particularly challenging to this methodology.

This is due to modelling constraints associated to very small fires in relatively large

compartments. While a big fire will release enough energy in order to provide sufficient
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information on a global level for the inverse model to estimate the model parameters, a

small fire will provide only local observations of higher temperature, which are averaged

out on an integrated level. Thus a significant amount of time has to elapse before the

observations can provide the necessary information for reliable estimation of model

parameters.

4.5.2 Fast Fire

Fires with a growth factor of around 0.047 kW/s2 are categorized as fast fires [19]. Fast

fires are typically found in polyurethane mattresses or polyethylene pallets. Again using

the same geometrical layout, a fast fire with a spread rate of 5 mm/s (α= 0.047 kW/s2)

was simulated with FDSv5. The output was used as observations for the assimilation

process and the lead times of the resulting forecasts were analyzed. The first data

considered for assimilation were from 14 s after ignition, and new data were then

recorded every 3.5 s.
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Figure 4.11: Spread rate (blue line) and entrainment coefficient (red line) for increasing
number of data points in the assimilation window.

Figure 4.11 shows the evolution of the invariant parameters of the model (spread

rate and entrainment coefficient) as a function of the number of observations assimilated

into the model. The spread rate converges to the true value of about 5 mm/s after

8 iterations. The entrainment coefficient converges to around 0.6, although it takes

about 10 data points to reach convergence. This value is higher than the entrainment

coefficient estimated in the case of a medium fire (first case), which can be attributed to
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the fact that the relatively bigger fire presents more interaction with the surrounding

walls, thus changing the entrainment flow significantly [15].
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Figure 4.12: Lead time of the forecast for growing assimilation window.

In Fig. 4.12 the lead time of the forecasts as a function of the number of observations

assimilated into the model is shown. A maximum lead time of 47 s is reached with 8

observations (40 s), allowing for forecasting of the temperature until about 90 s after

ignition. Note that the convergence of the spread rate (Fig. 4.11) is reached with 8

observations, so that new incoming data (9 observations and more) do not improve the

forecast, and thus only decrease the lead time.
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Figure 4.13: Forecast at 40 s after 8 data points are assimilated. The observed data is shown
together with the future development and the forecast of the fire. a) Hot layer temperature
b) Hot layer height c) HRR.

Figure 4.13 shows the forecasts of temperature, smoke height and HRR in case

of a fast fire for an assimilation window with observations between 14 s and 40 s.

Temperatures are within 10% of the observed temperatures until 87 s after ignition,

yielding a lead time of 47 s, as suggested in Fig. 4.12. The descent of the hot layer is

underpredicted significantly (between 20% and 80%), although the qualitative trend is

reproduced correctly. The comparison of the HRRs shown in Fig. 4.13c reflects the good

70



CHAPTER 4 WOLFRAM JAHN

estimation of the spread rate presented previously. The HRRs of the true fire and the

zone model forecast are in very good agreement until about 120 s after ignition, where

the fire becomes ventilation controlled, and the fire growth model presented (Eq. (4.6))

no longer holds. The overprediction of the hot layer temperature after 87 s even with a

perfect estimation of the growth parameters is explained by the underprediction of the

descent of the hot layer, which causes a smaller hot layer volume.

4.6 Concluding Remarks

The current state-of-the-art limitation to forecast fire growth is overcome here using a

data assimilation technique. The application is illustrated with a simple compartment

fire scenario.

A zone model with a t-squared fire in a compartment was implemented and the

growth rate was assimilated based on comparison to hot layer observations generated

by a validated CFD model. The results show that the simple mass and heat balances,

and plume correlation of the zone model are enough to satisfactorily forecast the main

features of the fire. It was possible to estimate the fire growth invariants correctly and

to find a physical basis for their values. Moreover, the method provides positive lead

times for the growth phase of a fire in the order of 30 s.

It was further shown that the forecast capabilities of the model depend on the amount

of data available for comparison. For only a few data points, the forecast is poor, even

if the estimated zone model temperatures agree correctly with the observations. As the

assimilation window grows, the forecast improves, and the estimated invariants converge

towards the true values. With the information of 13 data points the temperature and

HRR can be forecasted correctly until the end of the scenario considered here. However,

the estimated lead time seems to approach a peak at an assimilation window width near

13 data points.

Data assimilation in real cases is expected to depend on the scenario and model

used, but results presented here show that positive lead times are possible and suggest

the existence of an optimal assimilation window width that will be of interest for further

technological developments. These results are an important step towards the forecast of

fire dynamics to assist the emergency response.
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5
Inverse Modelling of Enclosure Fire

Dynamics using a Tangent Linear

Approach

5.1 Introduction

Forecasting enclosure fire dynamics is a subject of central interest in fire safety engi-

neering. While the first line of response to a fire event is part of the design process

of a building in the form of compartmentation of open spaces, smoke barriers, egress

paths, suppression and detection systems etc., fires that overcome these measures may

occur, and it is necessary to prepare for that case. If a fire escalates and the building

and occupants are unable to terminate the threat by the time fire fighters arrive, then

intervention will take place and management of the scene will be delegated to the fire

service. The fire fighting strategy to follow during a potential fire is currently based

mostly on the experience and the intuition of commanding officers of the fire service on

duty, but it would be life saving if fire fighting strategies could be decided upon based

on short and medium term forecasts of the development of the fire. Not only would this
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allow for more efficient strategies, it would also assure the safety of fire fighters who

enter the emergency scenario in order to attack the fire and rescue the occupants.

Modern buildings provide some useful information about an ongoing fire emergency,

including emergency management plans, security camera footage and security panels

which can indicate in a crude manner the origin and magnitude of the event. This

information will be included in the decision making process of commanding officers,

who then can deploy people and equipment more effectively. The current density and

nature of information, however, makes reliance on experience and intuition unavoidable.

It has been suggested to use of the output of fire models to assist emergency

response [1], and it is postulated that the forecasting of fire dynamics in enclosures

could imply a paradigm shift in the response to emergencies, providing the fire service

with essential information about the emergency development within some lead time.

Despite advances in the understanding of fire dynamics over the past decades and

despite the advances in computational capacity, our ability to predict the behaviour of

fires in general and building fires in particular using numerical models remains very

limited. From a fire fighting point of view, forecasting of fire events only makes sense if

it occurs with a positive lead time, i.e. if the prediction is based on current information

of the state of the system, and can be completed faster than the fire is evolving. Cur-

rent computational fluid dynamics (CFD) based fire models demand heavy resources

and computational time periods that are far greater than the time associated with the

processes being simulated (hours to model seconds). If comprehensive computational

models are ever to be used to estimate, forecast and understand fire growth in support

of emergency response, the computational time has to be shorter than the event itself.

This problem is being addressed in the FireGrid project [2], and a full justification of

this project together with an introduction to sensor assisted fire fighting is presented by

Cowlard et al. [3]. A summary of the key points is presented here.

Fire dynamics are inherently transient with timescales ranging from a few seconds

to several hours, and they are governed by strong coupling between the gas phase

(movement of hot gases, combustion) and the solid phase (heating of surface, pyrolysis,

fire spread) [4]. A comparative study of blind predictions of a real fire has shown that it

is not possible to accurately predict fire growth even when extensive information about

the fire scenario is available [5].
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5.1.1 Inverse Modelling

Even if all the governing mechanisms could be solved correctly, their chaotic nature

imposes a maximum possible lead time to the forecast, as has been shown for other

dynamic systems like weather [6]. It is thus suggested that fire modelling can not

be used for emergency response without feedback information from the evolving fire

scenario. Nevertheless, in conjunction with sensor data it has the potential to achieve

required speed, precision and robustness. It is proposed in FireGrid that sensor data

can be used as a substitute for detailed models enabling simpler approaches to provide

fast and well-informed outputs. Continuous correction of the model output by means

of sensor data can allow for steering of the models to account for uncertainty in the

input variables and for changes in the environment (window breakage, door opening

etc). This concept is illustrated in Fig. 5.1, where sensor data is assessed and then

continually reassessed to recreate the fire environment and steer the computations. The

model output can thus be used to forecast the evolution of the event with some lead

time. The information can then be summarized and delivered to the fire service in the

most useful form.

Environment 
Change
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analysis 
time 1

analysis 
time 3

analysis 
time 5

analysis 
time 7

analysis 
time 9

Prediction

Correction

Measured fire size
Experimental error
Model prediction
Correction

Figure 5.1: Conceptual representation of the data assimilation process and the sensor
steering of model predictions even when fundamental changes take place in an evolving
emergency scenario.

The use of sensor data to estimate model parameters is generally known as inverse

modelling. Parameter estimation and inverse modelling are an important area within

the engineering and scientific community.

In numerical weather predictions (NWP) inverse modelling and data assimilation

take an important part of the computational resources [7]. In order to initialize the

numerical models that are used to forecast the state of the atmosphere, weather ob-
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servations from all over the planet are collected and then assimilated into the model.

Observations are assimilated by initializing a new forecast based on a previous forecast

(several hours back), and correcting it according to the difference between the previous

forecast and the observations [8, 9]. Most modern NWP systems assimilate observa-

tions during a certain period of time (assimilation window) before starting the forecast,

in order to account for the dynamical coupling of the involved processes [10]. The

assimilation algorithm typically involves a linearization of the NWP system around the

previous forecast and the subsequent solution of a quadratic minimization problem [7].

The basic principles of this methodology, called the tangent linear model (TLM), are

applied in this work, adjusted to the specific features of fire dynamics.

In fire engineering, several inverse modelling studies have been undertaken. Richards

et al. [11] use a database of pre-run zone-type models to estimate fire location and fire

growth. They use the same zone model to generate the data for comparison, and analyze

the influence of measurements and modelling errors. Leblanc and Trouvé use a zone

model to predict the HRR time-history based on observations generated using the same

model [12]. While they are able to closely reproduce the heat release rate (HRR) history,

their work does not address how to produce a forecast of future events. Koo et al. [13]

used measurements from a fire test experiment to progressively steer fire simulations

towards the effective value using a Monte Carlo approach with a set of parameters that

was used for random generation of scenarios. While they were able to reproduce past

observations of temperature, they could not link the parameters of the model to the

physics of the full scale fire test, which limits the forecast of future events to statistical

considerations. Cowlard et al. [14] estimate the upward flame spread rate of PMMA

based on visual recordings of the flame height and temperature measurements at the

PMMA.

In this document a conceptual framework and a mathematical methodology is

proposed to allow for forecasting of fire growth. The highly complicated interaction

between gas and solid phase are replaced by a simplified fire growth model that is input

into the gas phase model as a boundary condition. This growth model is based on a set

of parameters that do not depend on the feedback from the fire and are thus constant

(at least for a certain amount of time). Observations from the evolving fire provide the

information for the estimation of the parameters for the growth model.
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(a) Fuel controlled fire (b) Ventilation controlled fire

Figure 5.2: Different stages of the fire. a) shows a fuel controlled, localized fire, while b)
shows a ventilation controlled fire.

5.2 Enclosure Fire Dynamics

Fire dynamics are governed by complex, strongly coupled physical processes constitut-

ing a feedback cycle [4]. Pyrolyzate is produced by chemical decomposition of the fuel

source as a result of heat transferred from the flame. The pyrolyzate is then dragged

into the flaming region where it mixes with fresh oxygen and burns resulting in flames,

which transfer heat back to the fuel source.

Two distinct stages can be observed in an enclosure fire, that have to be treated

fundamentally differently: a fuel controlled growth phase and a ventilation controlled

fully developed fire (pre- and post-flashover). The difference between both stages is

illustrated in the pictures of Fig. 5.2.

5.2.1 Fuel Controlled Fire

During the initial phase of a fire, sufficient oxygen supply is available to feed the fire,

and its spread rate does not depend on the ventilation conditions but on fuel arrangement

and quantity. During this stage the fire source is localized and modelling emphasis

must be on the accurate description of the growth rate of the heat release and the flame

geometry. Boundary conditions are important only in the proximity of the flames, and

the size and detailed geometry of the compartment does not greatly affect the course of

the fire. In this stage fire growth is the most important variable.

This work is focused on the fuel controlled regime, where flame spread is the

primary invariant to estimate, since the most important element in fire dynamics is the
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fire source, and it is therefore the first objective of a forecast attempt.

5.2.2 Ventilation Controlled Fire

As the fire grows, the compartment geometry and the ventilation conditions start playing

a more important role and the fire becomes controlled by the supply of oxygen. At

some point flashover will occur, after which flames start coming out of the openings

of the enclosure (doors, windows), as shown in Fig. 5.2b. In a ventilation controlled

fire the forecasting of temperature distributions and local burning will be of interest,

and measured data could be used to assist the model in assimilating new ventilation

conditions that can alter flow fields and burning regions.

5.3 Fire Modelling

In fire field modelling, traditional CFD is combined with simplified combustion models,

and smoke movement and temperature distributions can be reproduced reasonably

if the curve of heat release rate (HRR) of the fire, and the fire dimensions are well

characterized [15]. Predicting fire growth however, although theoretically possible, is

still subject to ongoing research and has not been implemented satisfactorily at a scale

that can be used in fire modelling. The complex physical phenomena involved in the

interaction between the flame and the solid fuel result in a large number of degrees of

freedom and uncertainties that are difficult to model.

Fire modelling typically handles enclosure length scales of around 10 m. Although

depending on the size of the fire, with a LES approach a grid resolution between

1 cm and 10 cm in the gas phase is generally required to obtain sufficient spatial

resolution [16]. Thus, the computational cost of modelling fire is considerable.

While flame spread can be reproduced with numerical models to considerable detail

for small flames (∼ 10 cm) in restricted computational domains [17, 18], it is much

more difficult and computationally expensive to do so in enclosure fire dynamics, as the

computationally domain typically consists of several metres, but grid cells of the order

of millimetres would be required for the modelling of the flaming and pyrolizing region.

A recent study has shown that flame spread modelling with a commonly used fire
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modelling tool is not reliable for engineering applications [19], even using a relatively

fine grid (2.5 cm).

The limitations in state-of-the-art fire growth modelling are thus an important

constraint to the forecast capabilities of fire simulations, as temperatures and smoke

production can only be predicted if the time curve of the HRR is provided. It is proposed

in this chapter to decouple the gas phase from the solid phase by imposing the fire

as a time dependant boundary condition to the gas phase modelling. The interaction

between gas and solid phase is replaced by a simplified fire growth model, which

is explained in the following section. Temperature measurements in the ceiling can

provide information on the governing parameters of the fire growth model, which can

then be used to produce a forecast of the future fire development.

5.3.1 Fire Growth

Although the inverse modelling methodology explained in the following sections can

be extended to fully developed fires, the present work is focused on the estimation of

model parameters related to the growth phase of the fire.

The decoupling of the solid phase processes from the gas phase is based on the

assumption that the radius of the burning area of an isotropic fuel grows at a constant

rate. This is a reasonable assumption for early fire development when flames do not

penetrate into the hot layer and heat feedback from the flames will not accelerate flame

spread [20]. The fire source becomes thus a time dependent boundary condition to the

gas phase simulation. Assuming a horizontal fire that starts at one point and spreads

outwards radially with a spread rate r (m/s), and assuming moreover a constant fuel

burning rate per unit area ω̇ (kg/s ·m2), the rate of heat release becomes proportional to

the area of the fire, which grows as a function of the spread rate and of time,

Q̇ =∆hc ṁ =∆hcω̇A(r, t ), (5.1)

where ∆hc is the effective heat of combustion (in kJ/kg). As long as the fire does not

reach the boundaries of the fuel surface the fire area is circular (A(r, t ) =π(r (t − t0))2)

(or has the form of a fraction of a circle, if the ignition point is e.g. at the wall), and the
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resulting HRR follows a quadratic growth.

This is a first approximation to simulate fire growth. It avoids direct coupling of

gas and solid phase. This approach is widely used in fire safety engineering, although

the governing parameters are summarized into a constant that is tabulated for different

materials and leads to what is known as an “αt 2” fire.

For real fuel packages (such as sofas, beds or other furniture), which consist of

several finite surfaces each with a potentially different spread rate, this approximation

has shown to still hold to a reasonable degree [21], and the constant α corresponds in

that case to an equivalent growth rate.

In fire field models the spread rate r can be prescribed, so that adjacent cells are

ignited producing a fire area that grows at rate r . This will then result in a fire that

evolves according to Eq. (5.1).

5.4 Inverse Modelling

5.4.1 Framework

In order to be able to predict the state of a physical system, it is necessary to identify

a set of parameters that characterize the system, and that do not change over time

(or change only due to external intervention). These parameters are the invariants of

the system. When modelling a physical process from first principles, the initial and

boundary conditions constitute the only invariants, and changes of these conditions are

only due to external intervention (for example a periodic boundary condition). In that

case the invariants are well established. However, physical systems can generally not be

modelled from first principles, and approximations have to be introduced, resulting in

additional invariants that have to be input into the model. These invariants are normally

obtained experimentally (e.g. fire spread rate).

In the present case the pyrolysis process is replaced by a fire growth model which

results in a boundary condition that changes over time according to Eq. (5.1). The

invariants of interest are the spread rates of the burning item, the corresponding fuel

burning rates and other parameters such as soot yield, radiative fraction etc (related to

other approximations in the model).
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The problem can thus be represented on the basis of these invariants summarized in

the vector θ:

θ = [
r1,r2, . . . ,ω̇1,ω2, . . . ,χR,1,χR,2 . . .

]
. (5.2)

Once a fire has been detected and observations are collected during the assimilation

window, the relevant invariants in θ can be estimated and a forecast of the fire devel-

opment can be made without solving the complex interactions between gas and solid

phase. The assimilation window is the period of time where observations are received

and considered for the optimization step. As time goes by, new observations come in,

providing more information on the history of the fire development. Note that in the

context of FireGrid several different kinds of observations can be recorded and analyzed

(e.g. the number of people in a compartment could be obtained from analysis of CCTV

recordings), but in the present work the term observation is used as a synonym of a

measured quantity (i.e. a measurement) such as temperature, smoke obscuration.

The forward model is a ‘black box’ in the context of the methodology presented, and

thus any model that represents the system to be simulated can be used. For scenarios

described in this work and the level of detail required in the approach presented in this

chapter, a CFD type fire model is necessary.

5.4.2 Cost Function

Data are assimilated into the model by minimizing a cost function that describes the

distance between the model output and the measurements. The governing parameters

are then adjusted until convergence is obtained. Many physical observations, such

as temperature, smoke obscuration, velocities etc. can be used in the cost function.

Temperatures and smoke obscuration are easy to measure and have relatively low

experimental error. They are used in the present work to be assimilated into the model.

The cost function is then defined as the sum of the distances between model output for

a given set of parameters and the measurements:

J (θ) =
N∑
i

[
yi − ŷi (θ)

]T Wi
[
yi − ŷi (θ)

]
, (5.3)
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where yi is the set of physical variables that is measured, and ŷi (θ) is the output of the

forward integration of the numerical model that computes the state of the system at time

ti from the initial state y0, and Wi is a weight matrix. The parameters to be estimated

are denoted by the vector θ. Data is assimilated during the assimilation window that is

discretized according to the output of the numerical model in N time steps.

The inverse problem that has to be solved in order to estimate the parameters θ can

be formulated as the following minimization problem:

min
θ

J (θ)

s.t. ŷi (θ) =Mi (y0,θ),
(5.4)

where Mi (y0,θ) denotes the forward integration model (a fire specific CFD code in this

case).

The CFD code is used to transport the information of the input parameters to

the location at the walls where measurements are taken by integrating the governing

equations in time and space.

5.4.3 Optimization

Several methods can be used to minimize the non linear cost function J (θ), which

can be summarized in two groups: Gradient based and gradient-free methods. While

gradient-free methods are heuristic methods that generate a random population of

possible minima and evolve towards the global minimum following different laws of

selection (for example survival of the fittest in Genetic Algorithms) combined with a

stochastic component, gradient methods start from an initial guess relatively close to the

minimum and then use information of the gradient to establish a search direction and

a step size. One important advantage of gradient-free methods is that they can search

over a large parameter space and do not get caught in local minima. They are also very

robust regarding the objective function to minimize and do not require smoothness or

continuity. However, they tend to need a large amount of function evaluations in each

iteration and have slow convergence rates compared to gradient based methods [22]. In

minimization problems where the cost function is continuous and an initial guess can

assured to be in the vicinity of a global minimum, gradient based optimization methods

84



CHAPTER 5 WOLFRAM JAHN

outperform evolutionary methods [22, 23].

The continuity of J (θ) and the relatively narrow range of possible parameters (spread

and burning rates are within limited ranges) suggest the use of gradient based methods.

Furthermore, the high cost of function evaluation (each evaluation of J (θ) involves a

forward integration of the fire model) makes evolutionary algorithms unattractive.

The computation of the gradient of the cost function (Eq. (5.3)) involves the differ-

entiation of the forward model with respect to the parameters, as shown in Eq. (4.11).

∇J (θ) =−2
N∑
i
∇Mi (y0,θ)T Wi

[
yi −Mi (y0,θ)

]
(5.5)

As a first approximation, a Finite Differences (FD) scheme was used to approximate the

gradient of the forward model,

∂Mi (y0,θ)

∂θ j
' Mi (y0,θ+ε j )−Mi (y0,θ)

||ε j ||
, (5.6)

where ε j is a vector with a small perturbation in θ j . While this is very easy to implement,

the accuracy of the derivative depends on the size of the perturbation ε j . Note that this

approach becomes computationally expensive when a large set of parameters has to be

estimated, as it requires an additional run of the forward model for each parameter. It is,

however, computationally cheap for small sets like the one at hand. This approach is

also easy to parallelize, as the model integration can be launched with the perturbations

on different processors.

5.4.4 Tangent Linear Model

There are a number of gradient based algorithms with different approaches as to how to

choose the best search direction and the most suitable step size. In the case of a linear

forward model the cost function is quadratic, which can be minimized in one step by

solving a linear system. While this is computationally cheap, physical systems tend

not to be linear. For a non-linear forward model as the one at hand, the tangent linear

model (TLM) can be computed [24, 7]. The TLM method consists in linearizing the

forward model Mi around some initial guess, so that the cost function is approximated

as quadratic. A graphical illustration of the TLM is given in Appendix A.
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Let us consider a Taylor expansion of the forward model Mi around some initial

guess θ0,

Mi (y0,θ) 'Mi (y0,θ0)+∇Mi (y0,θ0)(θ−θ0) (5.7)

The linearized forward model is then inserted into the cost function, yielding a

quadratic function J̃ (θ),

J̃ (θ) =
N∑

i=1

(
yi −

[
M (y0,θ0)+∇θM (y0,θ0) (θ−θ0)

])T

Wi
(
yi −

[
M (y0,θ0)+∇θM (y0,θ0) (θ−θ0)

])
, (5.8)

where θ is in the vicinity of θ0.

The gradient of the resulting quadratic cost function (Eq. (5.8)) is then as follows

∇θ J̃ (θ) =−2
N∑

i=1

[∇θMi (y0,θ0)
]T Wi

[
yi −

(
Mi (y0,θ0)+∇θMi (y0,θ0) (θ−θ0)

)]
(5.9)

Introducing the following annotation:

Mi = Mi (y0,θ0),

Hi = ∇pMi (y0,θ0),

θ̄ = (θ−θ0) ,

it is possible to write the first order condition for optimality as follows:

N∑
i=1

HT
i Wi

[
yi −

(
Mi +Hi θ̄

)]= 0. (5.10)

Equation (5.10) can be rearranged as

N∑
i=1

HT
i Wi Hi θ̄ =

N∑
i=1

HT
i Wi

(
yi −Mi

)
, (5.11)
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which is a linear system of the form

Aθ̄ = b,

where

A =
N∑

i=1
HT

i Wi Hi , and

b =
N∑

i=1
HT

i Wi
(
yi −Mi

)
.

By solving this linear system a new estimation of the parameters, θ̃∗, is obtained.

Note that the optimum of this problem is not necessarily equal to the optimum of

the original minimization problem (Eq. (4.10)). If the minimum θ∗ of the original

minimization problem (Eq. (4.10)) is close enough to the initial guess, the new estimate

θ̃
∗ will be equal to θ∗. If not, the procedure is repeated starting from this new point

until convergence is obtained.

Figure 5.3 illustrates the inverse modelling process using the TLM approach. A

scriptfile calls the forward model (CFD) jobs (k +1 in order to compute the k partial

derivatives for the gradient of Mi (y0,θ)), and, when all of them have finished, calls the

executable that computes the TLM. Each CFD job provides an output file with the data

for the calculation of the gradient. These files are read by the TLM executable, which

then computes θ̄ by minimizing the TLM and provides a new set of input files for the

next iteration. The process is repeated until some convergence criterion is met (changes

in the parameters from one iteration to the next smaller than a threshold value).

An alternative to the TLM method for unconstrained non-linear problems, the

quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is one of the most

widely used as it requires only first order derivative computation, but conserves the

good convergence characteristics of the Newton method [23]. The BGFS method is a

Newton based optimization algorithm where the second order derivatives are estimated

from the first order derivatives instead of calculating them directly. In spite of being

computationally less expensive than the traditional Newton method, the computational

effort of finding the optimum using the BFGS method is still considerable, as more than
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Figure 5.3: Inverse modelling procedure. The blue boxes indicate processes executed by a
script file. Red boxes indicate the execution of the TLM method and its output files. Green
boxes are the fire model.
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(a) (b)

Figure 5.4: Set up for the numerical experiment; a) the compartment as seen through the
visualization tool of the CFD solver; b) the same compartment with outlined walls. The
thermocouples in the ceiling are shown as dots.

one function evaluation (model run) is required for each iteration in order to find an

adequate step size.

The tangent linear model method (TLM) was implemented in this work and its

superior performance in this case is shown when compared to BGFS.

5.5 Using the TLM for Parameter Estimation

5.5.1 Scenario

The inverse problem procedure explained in the previous sections is illustrated applying

it to a well defined test case. The fire-specific CFD code Fire Dynamics Simulator

version 5.1.6 (FDSv5) [16] is used for the fire simulations. FDS solves a form of the

Navier-Stokes equations adequate for low-speed thermally driven flows.

The test scenario consists of a compartment of 4m×5m×2.5m with a door on one

side, and a window on the opposite wall (see Fig. 5.4). The observations are generated

using the same CFD model that is used for the inverse modelling (FDSv5) with a set of

parameters that will be referred to as true values. The fire is started at the corner of a

bed located in the room as shown in Fig. 5.5. It is then allowed to grow over the surface

of the bed. Fire spread rates in real fires range from 1 mm/s to 8 mm/s depending on

material and geometrical layout of the burning surface [4], and several cases are run

with spread rates in that range. A grid size of 10 cm is used and the simulations are

run for 300 s. After that the assimilation process is started. The output of the CFD
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model consists of wall temperatures measured with thermocouples in the ceiling and

smoke obscuration from beam detectors, which is compared to the observations. The

white noise option is activated for the generation of observations in FDSv5, which

adds a random, zero mean perturbation to the initial condition, in order to account

for perturbations and thus simulate real data. The thermocouples that measure wall

temperature of the ceiling are distributed uniformly on a 40 cm×40 cm grid throughout

the ceiling, resulting in 99 sensor locations as shown in Fig. 5.5. Eleven beam detectors

across the compartment, installed 10 cm below the ceiling, provide smoke observation

measurements. Their position is shown in Fig. 5.5, where the blue lines represent the

laser beams crossing the room. The forward model M which is used to estimate the
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Figure 5.5: Top view of the compartment. The green dots represent the thermocouples in
the ceiling, and the blue lines are the beam detectors.

invariants, is initialized with an arbitrary set of parameters θ0 and consists of the exact

same geometry as the model used to simulate the observations, including the position

and dimensions of the bed and the grid size.

According to Eq. (5.1) the fire size (HRR) is characterized by the spread and burning

rate. Note that Eq. (5.1) only applies as long as the fire does not reach the boundaries

of the fuel surface (in this case the bed). Once the fire reaches the boundaries of the

fuel surface, the fire growth is not quadratic any more, since the spread rate is not any

longer constant in all directions. This is not a problem at this stage, as the geometry of

the burning surface is assumed known, and if the spread rate is estimated correctly, it

will result in an exact replica of the fire growth curve.

The effective heat of combustion of the fuel is generally a well defined quantity
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that depends mostly on the material that is being burnt varying only slightly for similar

fuels [25], and a fixed value is assumed in the simulations. It can further be shown that

the HRR is relatively insensitive to that parameter [26], so that using an average heat of

combustion will not affect the outcome of the modelling significantly. The fuel mass

flow rate is a material property that also depends on the incoming heat flux from the

flame, and is therefore not independent from the fire.
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Figure 5.6: Sensor measurements recorded from the true fire.

Figure 5.6 shows a sample of sensor measurements recorded from the true fire. The

locations of the considered sensors are indicated by blue circles in Fig. 5.5. The time

evolution of the ceiling temperature is shown for a thermocouple above the fire area

(close to the ignition point) and for a thermocouple in an area towards the middle of the

room, away from the fire. Additionally two examples of the percentage of obscuration

as measured by a beam detector close to the ceiling are shown, one above the fire, and

another away from the fire.

5.5.2 Single Parameter

As a first approach, only the spread rate of the fire was estimated, and the fuel burning

rate was assumed known (1-dimensional estimation). Only thermocouple measurements

of ceiling temperatures throughout the ceiling are considered for assimilation. Mea-

surements are compared to model output directly, i.e. without prior data manipulation

(averaging, smoothing etc), at the times available from the recordings from the true

fire. Figure 5.7 compares the convergence of the spread rate of the bed fire obtained

using the TLM to the convergence obtained using the BFGS minimization technique.
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Figure 5.7: 1–dimensional parameter estimation; (a) shows the spread rate at different
iterations comparing TLM and BFGS, and (b) shows the difference between the estimated
and true value.

Figure 5.7a shows that the BFGS method takes more iterations to converge to a stable

value, and the final estimate differs significantly from the true value of 2 mm/s. This is

explained by the coarse approximation of the FD differentiation that is used to compute

the gradient. If the estimated parameter at iteration n is within a vicinity of the size of

the perturbation used to compute the derivative, a descent direction cannot be assured,

and the method is thus limited by the accuracy of the differentiation.

Using the TLM the convergence is faster and much more accurate. In this case the

approximation of the gradient does not directly affect the precision of the estimation

process, as it does not directly search for the zero of the gradient, but estimates the

minimum based on assuming that the cost function can be approximated by a quadratic

function close to the optimum. An additional advantage is that for the TLM only one

model run is required for each parameter per iteration, whereas the BFGS method needs

one run for each parameter and a few additional runs in each iteration to determine the

step size that assures a descent. Given the superior performance of the TLM, both in

accuracy and in computation time, it was decided to concentrate on the TLM and not to

develop the BFGS method for multi-parameter estimation.

5.5.3 Two Burning Items

A single burning item is the simplest case of a growing enclosure fire. However, in many

situations one item can ignite another close standing object when the flames engulf this

object (for example a curtain can catch fire if it is close to a burning bed). The spread

rates on both objects are not generally the same, and the capability of simultaneously
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Figure 5.8: The spread rates of 2 independent fires are estimated using TLM for different
first guesses. Graph a) shows the convergence of the spread rate on the bed, and b) shows
the spread rate of the fire growing vertically on the wall.

estimating both spread rates was investigated.

For this test case the same compartment explained in the previous section was

simulated to generate the data, with a fire starting at the same corner of the bed as

shown in Fig. 5.5, but simultaneously igniting wall lining material close by. One fire

thus spreads over the bed as in the previous case, and a second fire is assumed to grow

vertically upwards on the wall. In order to preserve the physical coherence of fire

growth, the observations were generated using a faster growth for the vertical fire than

for the horizontal (1 mm/s on the bed and 5 mm/s on the wall). Note that a vertical fire

will only grow at a constant spread rate as long as the flame is laminar [27]. Once the

flame becomes turbulent, the spread rate starts accelerating, and the fire growth model

used here (Eq. (5.1)) no longer holds. Within the scope of this work, the vertical fire is

for illustration purposes only, and the accelerating growth rate is not discussed.

The forward model was initiated using different first guesses for the parameters. In

Figure 5.8 the convergence of the estimated spread rates towards the true spread rates is

shown. Each curve represents a pair of first guesses (e.g. black square data was started

with a spread rate of 3 mm/s and 7 mm/s respectively). The estimation procedure is

shown to be robust regarding the first guess (within the range of physically meaningful

values). Figure 5.8a shows that the horizontal spread rate is slightly underestimated.

The vertical spread rate on the other hand is overestimated by around 7%, as shown in

Fig. 5.8b. Although the spread rates do not agree exactly with the spread rates from

the true fire, the difference remains within reasonable bounds. This demonstrates the

overall robustness of the estimation method, as it could correctly differentiate between
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Figure 5.9: Estimation of burning rate and spread rate of the fuel. Graph a) shows the
convergence of the burning rate, and b) shows the spread rate of the fire on the bed.

the two fires, even though the fire areas were very close to each other resulting in a

single flame.

5.5.4 Estimation of fuel burning rate

In this example it is attempted to estimate the fuel burning rate together with the

spread rate for a single burning fire growing over the bed as in the first example. The

observations used for assimilation are generated using a true spread rate of 2 mm/s and a

true fuel burning rate of 0.02 kg/s ·m2 (typical of residential fuels [25]). The estimation

process is initiated using different values ranging between 0.01 and 0.05 kg/s ·m2 for

the fuel burning rate, and values between 1 mm/s and 5 mm/s for the spread rate.

The convergence of the spread rate and of the fuel burning rate of a single burning

item is shown in Fig. 5.9. While good convergence is obtained for most first guesses

after 4 iterations, in some cases the convergence is noticeably slower (8 iterations). The

final difference between the true values and the estimations is of less than 3% for all

initial guesses.

5.5.5 Sensitivity to Sensor Locations

Inverse problems by definition cannot assure a unique solution. The more information

about the state of the system that can be obtained from the observations, the better

the estimations of the parameters, since more information will rule out more ‘wrong’

solutions. It was thus investigated how the density and distribution of sensors affects

the outcome of the parameter estimation.
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Figure 5.10: The spread rates of 2 independent fires are estimated with only 9 sensors.
Graph a) shows the spread rate on the bed, and b) shows the spread rate of the fire growing
vertically on the wall as a function of the iteration.

Figure 5.10 shows the estimation process for the parameters using the test case as

presented in section 5.5.3, with a fire on the bed and a second, vertically growing fire

on the wall. Only 9 sensor locations were used for assimilation, distributed uniformly

throughout the ceiling as indicated in Fig. 5.5, where the thermocouples that are

considered are enclosed in a circle. It is clear from Fig. 5.12 that 9 sensors are not

enough to differentiate between the two spread rates. Convergence of parameters is not

generally obtained.
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Figure 5.11: The spread rates of 2 independent fires are estimated with only 30 sensors.
Graph a) shows the spread rate on the bed, and b) shows the spread rate of the fire growing
vertically on the wall as a function of the iteration.

Using 30 uniformly distributed sensor locations (the thermocouples marked with

a cross in Fig. 5.5) for assimilation results in a better estimation of the parameters as

shown in Fig. 5.11, although convergence cannot be obtained for all first guesses in less

than 10 iterations. For those first guesses, where the parameters can be considered to

converge, the estimations are within 15% of the true values.

Figure 5.12 shows the convergence history for the parameters in the case that only
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Figure 5.12: Estimation of spread rates using sensors close to the fire and discarding
sensors far away from the fire location; a) shows the convergence of the spread rate on the
bed, and b) shows the spread rate of the fire growing vertically on the wall.

the sensors in the back part of the compartment, where the bed is located, are considered

for the assimilation. The parameters are estimated more accurately than in the case

where all sensors are considered (Fig. 5.8). This is explained by the sensors away from

the fire not providing useful information, but rather blurring the information provided by

sensors closer to the fire and thus making the overall estimation process less accurate.

5.5.6 Alternative sensors

Additionally to the parameters related to the boundary conditions, other model parame-

ters can be of interest and may have to be estimated. Soot production in fires is subject

to ongoing research, and state-of-the-art fire modelling tools cannot accurately predict

the soot concentration even for simple pool fires [28]. In FDSv5 the soot yield is not

computed as a result of combustion, but is an input parameter for the simulation. A

global soot yield is therefore estimated alongside with the fire growth rate.
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Figure 5.13: Estimation of the spread rate and soot yield in a compartment fire; a) shows
the convergence of the spread rate on the bed, and b) shows the soot yield.
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Figure 5.13 shows that while the spread rate can be estimated correctly after 4

iterations, the soot yield cannot be obtained by assimilating temperature data. The

influence of differences in the soot yield on the temperature distribution is minimal due

to the decoupling of soot production from the combustion. Therefore the temperature

data alone will not help to differentiate between different soot yields.

Other data will have to be used in order to estimate the soot yield of the fire. Beam

detectors are widely used as smoke detectors in industrial facilities. They consist of a

laser emitter on one side, and a receiver on the other side across the compartment. The

incoming light at the receiver is compared to the intensity emitted, and a percentage

of obscuration is calculated. When a certain threshold is passed due to obscuration of

smoke, an alarm is triggered. Although beam detectors are currently only used in a

binary mode (fire/no fire), it is possible to extract the value of obscuration and use it for

comparison to models.

The previous test case is repeated estimating the spread rate of a single burning

fire alongside the soot yield of the fire. This time, instead of the ceiling temperature,

obscuration measurements are assimilated into the model. The location of the beam

detectors is indicated in Fig. 5.5.
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Figure 5.14: Estimation of spread rate and soot yield in a compartment fire using beam
detectors as observations for comparison. Graph a) shows the convergence of the spread
rate; b) shows the convergence of the soot yield towards the “true” value.

Figure 5.14 shows the convergence behaviour for the spread rate and the soot yield.

The obscuration due to the smoke of the fire provides enough information for the

accurate estimation of these two parameters.

When adding the fuel burning rate as a parameter to estimate, the obscuration data

alone could not pick up the joint contributions of spread rate and fuel burning rate to
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the overall HRR. For the full characterization of a compartment fire, including spread

rate, fuel burning rate and the soot production, the beam detectors were therefore used

in conjunction with thermocouples in the ceiling.
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Figure 5.15: Characterization of a compartment fire. Graph a) shows the convergence of
the spread rate. b) shows the convergence of the burning rate, and c) shows the estimation
of the soot yield of the fire.

The thermocouple data together with the obscuration provided the necessary infor-

mation for the estimation of all three parameters, as shown in Fig. 5.15. The spread

rate (Fig. 5.15a) and the soot yield of the fire (Fig. 5.15c) are estimated with acceptable

accuracy after 4 to 5 iterations. Convergence of the fuel mass flow rate (Fig. 5.15b) can

take more than 6 iterations for certain combinations of first guesses.

5.6 Forecasting Fire Growth in a Compartment

The forecast of a physical process relies on a good estimation of the invariant parameters.

A typical forecast cycle thus includes a data collection period, an assimilation period

where the boundary and initial conditions are estimated, and finally a forecast based on

those estimated parameters.

In the previous sections the estimation of invariant parameters is demonstrated

(which corresponds to the assimilation of data). Generally it takes 6 to 8 iterations of

the optimization cycle to obtain convergence. Each iteration involves many parallel

executions of the CFD model (in this case FDSv5), so that each iteration lasts as long

as it takes to run the slowest of the parallel CFD runs. Bearing in mind that a detailed

CFD model can take several hours and even days to run, it would not be practical to use

them for forecasting, as the lead time will be negative (i.e. the prediction arrives after

the event has taken place).

However, since measured data are assimilated into the model, the fire could be
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modelled in a much cruder way. The observations from the fire will provide the infor-

mation lost by the approximations of the model. Computations can thus be accelerated

considerably. Using grid cells with an edge of 25 cm will speed up the calculations over

100 times compared to grid cells with an edge of 5 cm.

The methodology presented in section 5.4 is independent of the size of grid cells that

are used for the forward model, as long as it represents the flow field and temperature

profiles within acceptable bounds. The CFD code (FDSv5) was tested for different grid

sizes, and it was established that for a grid size with cell edges of 25 cm, temperature

profiles were still in good agreement with simulations done with grid cells of 5 cm

edges (compare chapter 2). It was thus decided to use 25 cm edged grid cells for the

inverse model and the subsequent forecast.

Note that the lead times presented in the following sections refer to the time between

the end of the assimilation window and the time where the forecast diverges from the

true fire development. The assimilation time (i.e. the time it takes to estimate the

parameters and to make a forecast) is not considered, since it would not be possible

to obtain positive lead times considering these times in spite of the greatly reduced

computation time. Using CFD to produce useful forecasts (that are available a priori,

i.e. before events take place) of fire events is at the present far from being applicable.

The goal of this paper is to illustrate that when observations from the fire are assimilated

into the model, it is possible to reduce computation time considerably without losing

accuracy.

Deciding the width of the assimilation window requires some analysis, since it has

to be sufficiently large as to gather enough data, but small enough to still leave time to

make a forecast.

The same fire scenario as presented in Fig. 5.4 was used to forecast fire growth with

sensor locations as shown in Fig. 5.5. A fine grid (5 cm) FDSv5 simulation was run

in order to produce the most realistic observations possible, and a coarse grid (25 cm)

model was used to for assimilation and forecast. The true spread rate was fixed at

5 mm/s, which corresponds to a medium to fast fire typical in mattresses [4]. The

geometry of the compartment is assumed known, as are fuel type, fuel location and fire

origin.

As opposed to the previously discussed cases, where ceiling wall temperatures were
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used, gas temperatures close to the ceiling were used for assimilation into the model in

this case. In a CFD model temperatures are calculated in the center of each grid cell,

representing thus the average temperature of the whole cell. This can lead to important

underpredictions of the temperature close to the ceiling if the cell size is larger then the

depth of the ceiling jet, resulting in an underprediction of the heat fluxes to the ceiling

and a subsequent underprediction of the wall temperature.

The grid cell size in the forward model is 25 cm, which is more than the typical

depth of the ceiling jet (less than 20 cm). In order to overcome the underprediction

due to average temperatures in the forecast model, observations were taken inside and

outside the ceiling jet in the true fire, and an average of both was used for assimilation.
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Figure 5.16: Spread rate as a function of the growing assimilation window.

Figure 5.16 shows the estimated spread rate of the fire as a function of the width of

the assimilation window. With 150 s worth of data the spread rate is estimated to be

5.63 mm/s, 13% higher than the spread rate of the true fire. As more data come in a

better estimation can be made, and after 330 s worth of data the estimated spread rate is

within 1% of the true spread rate.

Figure 5.17 shows the forecast made with 150 s of data. The coarse grid simulation

used for the assimilation cycle is not able to pick up the early fire growth correctly,

producing an overprediction of the spread rate. As a consequence of this the HRR is

overpredicted (Fig. 5.17a), which results in forecasted temperatures higher than the true

fire development (Fig. 5.17b). The lead time, defined as the time ahead of the event

during which the forecasted temperature is less than 15% off the true temperature, is

only approximately 50 s.

Figure 5.18 shows the forecast made with 330 s worth of data. The HRR is in very
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Figure 5.17: Forecast after 150 s of assimilated data. The observed data is shown together
with the future development and the forecast of the fire; a) HRR b) Average Ceiling Jet
temperature.
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Figure 5.18: Forecast after 330 s of assimilated data. The observed data is shown together
with the future development and the forecast of the fire; a) HRR b) Average Ceiling Jet
temperature.

good agreement with the true fire (Fig. 5.18a), and although forecasted temperatures are

slightly higher than the true fire development (9%), the slope of the temperature curve is

equal to the true fire development (Fig. 5.18b). The lead time in this case is thus limited

only by the next critical event that will change the burning behaviour fundamentally.

The assimilation and forecast cycle using 330 s of data took around 10 minutes on a

standard dual core PC. If a blind prediction of the same fire scenario (without feedback

from the fire) were to be made, it would require grid cells with edges of the order of less

than a centimeter in order to be able to reproduce the underlying physics with enough

accuracy. Such a simulation would take several weeks to run (compare [19]).

5.6.1 Unknown Fuel Source

Although the geometry of the room (walls, windows, doors) does usually not change

and might therefore assumed to be known, the exact location and size of the fuel source
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might not be well defined beforehand. Desks, chairs, bed and other potential fire loads

can be moved freely within the compartment, and their exact composition and layout at

the moment of a fire event are not easy to establish.

The sensitivity of a forecast to the assumptions regarding the fuel load are investi-

gated. Note that the fire origin is relatively easy to obtain (as a first order approximation

it would be enough to select the location of the thermocouple with the highest tempera-

ture reading), and can therefore always be assumed as known. The exact dimensions

and location of the fuel load on the other hand are unknown.

As more detailed information is missing, the surface of the fuel load in the forward

model is assumed to cover all the area of the compartment, although at an elevated level

(0.4 m above the floor, at the height of the fire origin). The fire is thus not restricted to

the area of the bed. This will obviously lead to a larger fire size than in the true fire once

all the surface of the bed is burning, and subsequent divergence of the forecast from the

true fire later on, as the fire growth is only limited by the walls of the compartment.
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Figure 5.19: Spread rate as a function of the growing assimilation window with unknown
fuel load.

Figure 5.19 shows the estimated spread rate of the fire as a function of the width

of the assimilation window. The estimated spread rate is much smaller than the true

spread rate. This is due to the layout of the true fire, which starts at the corner of the

bed. Thus the initial fire area grows as the quarter of a circle. In the forward model

without prior knowledge of the fuel source the fire does not start at a corner (although

still at the wall) and can grow as a half-circle. For the same fire area the forward model

without prior knowledge of the fuel has thus a smaller radius (i.e. smaller spread rate).

Figure 5.20 shows the forecast made with 330 s worth of data. Although the HRR is
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Figure 5.20: Forecast after 330 s of assimilated data with no prior knowledge of the fuel
load. The observed data is shown together with the future development and the forecast of
the fire; a) HRR b) Average Ceiling Jet temperature.

underpredicted by around 15% (Fig. 5.20a), the temperatures are in good agreement with

the true fire (Fig. 5.18b), and the forecast lies within 13% of the true fire development.

Note that temperatures are only recorded close to the ceiling, and that the lower HRR

leading to higher temperatures is thus not necessarily a contradiction. It is conjectured

to be the result of a different flow pattern due to a different fire area [15].

5.7 Conclusions

Fire dynamics combine a series of complex physical processes that are closely cou-

pled to each other by nonlinear relations and are therefore hard to model. Predictive

modelling of fire dynamics gives rise to further complications, as very different length

and timescales have to be solved simultaneously and the computational resources are

limited, so that it is impossible to solve the entire physics in reasonable time (let alone

with positive lead time). In state-of-the-art fire modelling the HRR is thus an input into

the model rather than a result of the modelling. Therefore the forecast capabilities of

fire modelling tools are limited, and it has been shown that blind predictions of real

scale fire tests are not possible [5].

The proposed methodology was implemented in a real-scale fire simulation, and

different parameters were estimated with a reasonable computational effort.

It was shown that it is possible to estimate the parameters that govern fire growth

using CFD fire modelling together with measured data from the fire, and thus to

decouple the highly complex processes of heat transfer from the flame and pyrolysis
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in the solid phase. This approach allows for the use of relatively coarse grids, as mass

and heat transfer from the fire to the sensor locations are the model outputs of interest,

and the high resolution in the flaming region (which would be needed for an accurate

description of the coupling between gas and solid phase) is not necessary. It was shown

that several invariants can be estimated simultaneously and the effect of sensor density

and distribution was investigated. It was further shown that the methodology presented

does not require an exact knowledge of the fuel layout in the compartment, although

the location of the fire origin is assumed known.

A relatively coarse CFD simulation was used to assimilate temperature observations,

and useful forecasts could be produced in a time comparable to a characteristic fire

duration. While this is still not practical for real world applications, the computation

time could be reduced by several orders of magnitude compared to an equivalent fully

detailed simulation, by substituting details that were lost as a consequence of the coarse

grid with observations from the fire. The 10 minutes assimilation time obtained in this

work is deemed by the authors to be reducible in another order of magnitude in the near

future by advances in computational power. The methodology presented in this paper

constitutes thus a feasible step towards useful fire scenario forecasts with a positive lead

time.
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6
Estimation of the Fire Growth Rate in

a Real-Scale Fire Test

6.1 Introduction

Forecasting fire dynamics is conjectured to lead to a paradigm shift in the response

to fire emergencies in buildings, providing the fire service with essential information

about the development of the fire with some lead time (i.e. seconds or minutes ahead

of the event) [1]. An attempt to apply a forecasting methodology to fire dynamics of a

real fire is presented in this chapter using the inverse model methodology developed

in chapter 5, and using the real scale experiment of Dalmarnock Test One. The spread

rate of a fire on a burning sofa in a full scale compartment is estimated using an inverse

modelling approach, and a forecast of the fire development is made.

The term ‘forecast’ is used in the context of this chapter as a theoretical process

of predicting fire development based on comparison to observations from the evolving

fire scenario, i.e. based on (automatic) tuning of the model with information received

from observations. In reality positive lead times can not yet be provided if numerical

fire models are used for the forecast, as the assimilation process alone still takes longer
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than a typical fire scenario (15-20 min assimilation compared to 5 min fire), despite

important simplification and resulting speed-up (see chapter 5).

The experimental set up, procedure and results of the Dalmarnock Tests are pre-

sented elsewhere ([2, 3], chapter 2), and will not be discussed here.

In chapter 2 the early HRR development of Dalmarnock Test One, which had not

been measured during the test, was estimated by comparing field model output to

observations from the test. Based on laboratory experiments, two HRR curves were

established that provided an upper and a lower bound for a possible HRR. Although the

modelling work was done a posteriori, it suggested that CFD type modelling could be

used to recover to a certain extent the underlying physics of the fire growth in a real

compartment fire. However, the lead time of that approach was in the order of months

(that is the time it took to establish the HRR bounds), which is far from a positive lead

time.

6.1.1 Simplified Forecast

The technology of forecasting fire dynamics based on numerical simulation of the

underlying physics is currently non-existent because available fire simulation tools

cannot predict fire growth in a fast, precise and robust manner.

Nevertheless, a very simple and fast way of forecasting fire development is to

analyze the time history of the average temperature in the compartment (which can

be estimated from live observations from the fire scenario). An adequate curve can

be fitted to the available data and, assuming that the temperatures grow following the

same curve, it is possible to forecast the average temperature with some acceptable

uncertainty.

Figure 6.1 shows the average compartment temperature during the first 300 s of

Dalmarnock Test One. After an initial rapid increase the temperatures follow a relatively

slow linear growth until about 220 s. If a forecast was made 200 s after ignition, the

temperatures would be well approximated by a linear fit as indicated in Fig. 6.1. Due to

the decoupling from the underlying physics, the forecast can not anticipate changes in

the growth pattern and is limited to short times (in this case until 220 s). The usefulness

of this approach for assisting the decision making process of commanding fire service
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Figure 6.1: Forecast based on simple curve fitting.

officers is equally limited, especially considering that the forecast is only valid for those

sensor locations whose readings are included in the observations (if thermocouples are

only installed close to the ceiling, the forecasted development is only for temperatures

close to the ceiling, not for general temperatures). However, the forecast is almost

instantly available without the use of extensive computational resources, and any more

sophisticated forecasting system will have to outperform this approach (at least in some

way) in order to be considered for implementation.

The methodology presented in chapters 4 and 5 if applied to real data could provide

a useful, physics based forecast within a reasonable time frame.

The simplified and decoupled fire growth model presented in chapters 4 and 5 is

thus implemented, estimating the spread rate of the fire on the sofa. Other parameters

necessary for the simulation of a complex fire scenario such as Dalmarnock Test One

were taken from previous analysis and are assumed to be known.

6.2 Prior analysis

The ignition and early burning of the sofa in the Dalmarnock Fire Tests was reproduced

in several laboratory experiments in order to provide an input HRR for numerical mod-

elling of the Tests (see chapter 2). The first of these experiments was conducted before

the Dalmarnock Test series was carried out, and the ignition protocol differed somewhat

from the protocol finally adapted in Dalmarnock. In the laboratory experiments the
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ignition source (a basket filled with crumpled waste paper and some accelerant) was

standing next to the sofa without direct contact to the sofa, whereas in Dalmarnock both

items (bin and sofa) were connected by means of a blanket placed over the armrest and

hanging into the waste paper basket. Accelerant had been spilled in the bin and on the

blanket in order to assure reasonably rapid ignition of the seating area of the sofa.

A second series of laboratory experiments was conducted after the Dalmarnock

Tests. In these experiments the ignition protocol was reproduced as closely as possible

based on layout information, photographs and video recordings from Dalmarnock.
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Figure 6.2: HRRs for sofa as measured in laboratory experiments.

Figure 6.2 shows the HRRs as estimated using oxygen depletion calorimetry in

the laboratory experiments. The blue data correspond to the first experiment (Set 1,

carried out before the Dalmarnock Tests), while the red correspond to the second series

of experiments (Set 2, carried out after the Tests). The blanket, included in Set 2, is

conjectured to have acted as a bridge between the burning bin and the seating area of

the sofa, bypassing the barrier of the armrest. The fire could thus spread to the seating

area of the sofa more easily.

The HRR curves presented in Fig. 6.2 show two distinct patterns in time (this is

discussed with more detail in chapter 2). The initial peak, that can be attributed to the

burning of the waste paper bin, is followed by a slower growth which is conjectured

to correspond to the sofa itself. The growth on the sofa can be approximated to good

agreement by a quadratic curve.

Figure 6.3 shows the HRRs with their respective t2-fit and the HRR of the waste

paper bin together with the blanket (which is obtained by resting the t2-fit from the
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Figure 6.3: Quadratic fit of the HRR curves measured in the laboratory experiments with
estimated bin fire; a) experiment prior to Dalmarnock (Set 1 according to chapter 2), b)
second series of experiments, conducted after Dalmarnock (Set 2 according to chapter 2).

original data). The contribution of the bin fire is negligible after about 400 s in both

cases.

The t2-curve that can be fitted to both laboratory experiments confirms the validity

of a fire growth consistent with the growth model proposed in chapter 5, where the

HRR is assumed to be proportional to the fire area,

Q̇ =∆hc ṁ =∆hcω̇A(r, t ). (6.1)

Here ∆hc is the effective heat of combustion (in kJ/kg), r (m/s) is the spread rate of

the fire (assumed constant), and ω̇ (kg/s ·m2) is the fuel burning rate per unit area. As

long as the fire does not reach the boundaries of the fuel surface the fire area is circular

(A(r, t ) =π(r (t − t0))2), and the resulting HRR follows a quadratic growth.

The fire spread model presented in equation (6.1) is thus used in this approach to

characterize the fire growth, and the growth rate is estimated.

6.3 Model Details

The fire specific CFD code Fire Dynamics Simulator version 5.1.6 (FDSv5) [4] is used

for the fire simulations in the forward model. FDS solves a form of the Navier-Stokes

equations adequate for low-speed thermally driven flows.
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Figure 6.4: Computational domain and fuel items used in the FDS simulations.

6.3.1 Computational Domain

Detailed information about the experimental set-up of Test One can be found else-

where [2, 3]. Test One was held in a two-bedroom single family flat, with the living

room set up as the main experimental compartment.

In order to make the modelling more efficient in terms of computational time, the

computational domain concentrated on the main compartment room of Dalmarnock

Test One and its vent openings (Figure 6.4). This compartment was 3.50 m by 4.75 m

wide and 2.45 m high with a 2.35 m by 1.18 m two-pane window. A detailed account

of the model set up is given in chapter 2. For eventual fluid dynamic effects on the

ventilation flows, the kitchen and an artificial hallway adjacent to the main compartment

are included as shown in Fig. 6.4. The other rooms of the apartment were not considered,

since they did not contribute to the fuel load nor significantly affected the ventilation

flows.

The fuel load in the main compartment included the sofa and two bookshelves in

the corner behind the sofa as shown in Figure 6.4. Although the coffee table, chairs and

desks also contributed to the fuel load, this occurred only after flashover, and will not

be considered here.
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6.3.2 Grid Size

A grid sensitivity study for FDS applied to the Dalmarnock Test One was conducted

by Jahn et al. [5], where it was shown that the results from a simulations with 20 cm

grid are still in good agreement with the experiments, although the plume is not well

resolved. In the context of this work computational speed is the primary goal, as details

that are lost by the insufficient numerical resolution can be recovered from observations

from the fire, and a 20 cm grid is thus chosen for the forward model simulations.

6.3.3 Modelling of the Fire

According to the analysis presented above, the fire is modelled in a twofold way. The

area of the bin fire is assumed as constant, and its intensity is modelled as a constant

HRR per unit area that decreases linearly to zero between 150 s and 250 s. This is a

crude approximation of the contribution of the bin to the total HRR as shown by the

green data in Fig. 6.3b. The fire growth on the sofa is modelled by subsequent ignition

of surface cells according to a prescribed spread rate, starting from a point on the edge

of the sofa closest to the burning bin (at the same time the bin ignites). By doing this

the fire spread is decoupled from the heat feedback from the flame, and the spread rate

becomes the invariant parameter to estimate.

Exact modelling of the fire spread over the sofa is not possible with this approach,

due to the complicated geometry of the sofa that can not be captured by the coarse grid.

It must be kept in mind however that the exact dimensions of the fuel source are not

generally known to the forecasting system, and it is more realistic to assume some kind

of equivalent fuel (the determination of a general equivalent fuel load that represents

the greatest possible number of fuel sources is as yet a pending issue). In the present

case it was assumed that the sofa is a plane surface of 1.44 m2, which corresponds to

the sum of the areas of the sofa’s different surfaces (within the restriction that it has to

be consistent with the grid). The sofa (i.e. the plane surface that represents it) in the

forward model is located in approximately the same place as in the real scenario.
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6.3.4 Data Assimilation

The high density of instrumentation in the Dalmarnock Tests and the relatively fine grid

of gas phase temperature measurements provide a fairly high number of observations

that can be assimilated into the forecasting system. And although it might be argued

that sensor distributed as uniformly as seen in the Dalmarnock Tests is not realistic,

those sensors that provide the most useful information during the early stages of the fire

are the ones close to the ceiling, where the highest temperatures are recorded. Therefore

using only sensors close to the ceiling might be sufficient (which is feasible from a

operational point of view). In this attempt of using CFD to forecast fire dynamics of

a real scale fire test, gas phase temperature observations at locations higher than 1 m

were assimilated.

6.4 Forecast Result

The parameter to be estimated was the spread rate of the fire on the sofa. The bin fire

was defined based on the results presented in Fig. 6.3b, as mentioned above. All other

input parameters that needed to be defined in order to produce a forecast (radiative

fraction, soot yield etc) of the fire were set to values within the ranges given in chapter 2

and [6] or to default FDSv5 values if applicable. Two hundred seconds of data were

used for assimilation.
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Figure 6.5: Convergence of the spread rate as function of iterations.

Figure 6.5 shows the estimated spread rate as a function of the iterations. The

process is started with only a bin fire (spread rate on the sofa is set to zero). After four

iterations it has converged to 2.5 mm/s.
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Figure 6.6: Forecast of fire development in Dalmarnock Test One.

The result of the analysis is shown in Fig. 6.6, where a forecast is made with a

spread rate of 2.5 mm/s over the sofa. The temperature presented is an average of all the

temperature observations considered for assimilation. The black squares represent the

observations from Dalmarnock Test One, while the red dots is the model output within

the assimilation window (less than 200 s). The blue triangles represent the forecast of

the average temperature made based on the information of the assimilated data. The

total HRR of the forecast is a combination of the bin fire (dashed line) and the estimated

sofa fire (green line). The upwards trend of the observed temperature in Dalmarnock

after 220 s is forecasted correctly.
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Figure 6.7: Forecast of the temperature at Rack 1 (see Fig 2.1 for sensor location); a) at
230 cm above floor level (15 cm from ceiling) and b) at 160 cm.

The temperature forecasts at six localized points of comparison are presented in
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the following sections. Figure 6.7 shows the forecast of temperature development in

the north east corner of the compartment (thermocouple rack 1, see Fig 2.1). Although

the increase in temperature after 200 s is forecasted with a slightly less steep slope at

230 cm above floor level, the differences between true development and forecast remain

within 10%. At the thermocouple at 160 cm above the floor the forecasted temperatures

show the same growth rate as the true temperatures.
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Figure 6.8: Forecast of the temperature at Rack 19 (see Fig 2.1 for sensor location); a) at
230 cm above floor level (15 cm from ceiling) and b) at 160 cm.

Figure 6.8 shows the temperature development at rack 19 in the south west corner

of the compartment, close to the window (see Fig. 2.1 for exact location). At 230 cm

above the floor the forecasted temperature rise coincides with the true development,

providing good agreement until 300 s. At 160 cm above floor level the temperature is

slightly overpredicted during the assimilation period (until 200 s), but the forecast is

within 10% of the true development.

Close to the flaming region the forecast is expected to be of less quality, due to the

low resolution of the numerical grid. Figure 6.9 shows the temperature development

at rack 7 located next to the burning waste paper basket. Especially during the early

stages of the fire, when the contribution of the basket is considerable and combustion

takes place in the cells where the thermocouples are located, the temperatures produced

by FDS show great fluctuations and do not agree well with the data from the true

fire. The forecasted temperatures present a lower rate of increase compared to the true

temperature development.
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Figure 6.9: Forecast of the temperature at Rack 7 (see Fig 2.1 for sensor location); a) at
210 cm above floor level (35 cm from ceiling) and b) at 140 cm.

6.5 Conclusions

It was possible to find a good fit between the observation and the simulations, and

estimate a spread rate that lies within the possible range of values. A forecast of future

fire development could be made with a lead time of around 50 s.

A realistic fire spread rate could be estimated based on comparison of model output

to measurements of the fire scenario, although it could not be compared to the true

value, as no estimation of the spread rate on the sofa was made in the Dalmarnock Tests.

A forecast of a real fire event could be made with a potentially longer lead time

than a forecast based on the gradient of the temperature measurements (if, of course,

it is assumed that the assimilation time is negligible). While the temperature gradient

method predicts a constant growth of 0.19 oC/s after 200 s, the method presented is able

to predict the change in the gradient after 220 s.

Another advantage of this method over the curve fit forecast presented in Fig. 6.1

is that the CFD based forecast is also able to predict localized temperatures, not only

average. Here the real strength of the proposed forecast methodology was shown. The

forecasted temperature at localized points in the compartment was shown to be in very

good agreement with the true development of the temperatures, as long as measurements

were compared outside the flaming region. Within the flaming region the forecast is, as

expected, of much less quality. Although only a few points of comparison are shown

here, the good agreement of the forecast with the true temperature development was
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generally observed throughout the compartment. Thus, using this CFD based forecast

methodology the temperature at locations away from measurements can be extrapolated,

and the spatial distribution of temperatures in the room can be forecasted.

Many issues have still to be addressed. Dalmarnock Test One is a very challenging

set of data for the tested methodology. The predominance of the bin fire in the early

stages of the fire makes it difficult to correctly estimate the spread rate of the fire on the

sofa. Indeed, assuming a different burning pattern for the bin fire (variable instead of

constant) would change the estimation of the spread rate of the fire on the sofa, and the

robustness of the method has to be investigated in this context.

Another pending matter is the fact that the assimilation time with this forecasting

methodology is still not negligible. Although the CFD model could be run with a very

coarse grid, it took between 15 to 20 min to estimate the parameters correctly and

to produce a forecast. Compared, however, to run times that would be required by

traditional CFD based fire spread models with no information feedback from the fire

scenario, these results are very close to positive lead times, and it is conjectured by the

author that positive lead times will be possible in the near future with this methodology.
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7
Conclusions and Future Work

7.1 Conclusions

Fire dynamics combine a series of complex physical processes that are closely coupled to

each other by nonlinear relations and are therefore hard to model. Predictive modelling

of fire dynamics raises further complications, as very different length and timescales

have to be solved simultaneously and the computational resources are limited, so that

it is impossible to solve the entire physics in reasonable time (let alone in real time).

In state-of-the-art fire modelling the HRR is thus an input into the model rather than

a result of the modelling. Therefore the forecast capabilities of fire modelling tools

are limited. It was shown in chapter 2, however, that using engineering criteria it is

possible to establish lower and upper bounds for possible HRR curves in a real case

fire compartment, if access to detailed observations form the fire is available. Although

the process was tedious and required extensive time, it confirmed the conjecture that

incoming observations from an evolving fire scenario can help to initialize and update

forecasts.

A new methodology to effectively forecast fire growth based on assimilation of

measured data is thus presented and illustrated in this document. It was shown that

simple and robust (zone- or field-type) fire models that are able to deliver an output
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in the order of a few minutes can be used to recover detailed information about the

ongoing fire event by means of assimilating live recorded data from the emergency

scenario. With this information a well informed forecast of the future fire development

can be made.

The core of this methodology is a simplified fire growth model which consists

of decoupling the gas phase modelling (flame) from the solid phase (pyrolization).

Measurements from the fire are used to estimate the parameters that govern fire growth.

These parameters are assumed to be constant for a certain period of time, and allow thus

for a forecast of future fire development. The methodology is widely independent of

the forward model to be used. As long as it represents the fire dynamics to be modelled

satisfactorily, any existing model, zone- or field-type, may be used, as it is a ‘black box’

to the methodology. The methodology was implemented in a real-scale fire simulation,

first using a zone type model (chapter 4), and then using a coarse grid CFD model

(chapter 5). Finally, in chapter 6, the proposed methodology was tested with data from

a real scale fire test.

It was shown in chapter 4 that a simple zone model, based on mass and heat balances

between the layers, together with plume correlations, is enough to satisfactorily recover

information of the main features of a fire. It was possible to estimate the fire growth

invariants correctly and to find a physical basis for their values. It was further possible

to provide positive lead times for the growth phase of a fire in the order of 30 s.

When used with a CFD type fire model, the methodology showed that it is possible

to estimate the fundamental invariants that govern fire growth such as spread rates and

burning rate, and other parameters associated to fire. Relatively coarse grids could be

used in the assimilation and forecast, as a high resolution in the flaming region (which

would be needed for an accurate description of the coupling between gas and solid

phase) is not necessary. Although temperature measurements are the most obvious

observations to be assimilated, other measurements, e.g. smoke obscuration, proved to

be essential as a complement for parameters that are largely insensitive to temperatures.

A useful, physics based forecast of a fire development could be produced in a time

comparable to a characteristic fire duration using a CFD type forward model. While this

is still not practical for real world applications, the computation time could be reduced

by several orders of magnitude compared to an equivalent fully detailed simulation, by
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substituting details that were lost as a consequence of the coarse grid with observations

from the fire. The assimilation time obtained in this work (of the order of 10 minutes) is

expected to be reducible by at least an order of magnitude within the coming decade by

advances in computational power. The methodology presented in this thesis constitutes

thus a feasible step towards useful fire scenario forecasts with a positive lead time.

An obvious limitation of the proposed methodology is given by the capability of

the forward model to represent the true fire. A zone type forward model is a very

crude approximation of the governing physics and its applicability (and/or associated

uncertainty) to each individual scenario has to be established before implementation.

CFD type forward models generally are sufficiently detailed, even with coarse grids, to

account with reasonable accuracy for the necessary features (mass and heat transport),

but the maximum grid size that can be used without losing the link to the underlying

physics needs to be addressed in order to assure acceptable results.

Although the viability of installing and implementing the required sensors in a real

building was considered and discussed in this work, this remains an unsolved issue.

When using a zone type forward model it is necessary to have a good estimation of the

hot layer average temperature, which can be difficult to obtain from a practical point

of view. It has to be investigated whether temperatures from thermocouples close to

the compartment boundaries can provide enough information for an estimation of the

hot layer temperature. If this is not the case, using a zone type forward model will not

be possible in this context. A similar problem arises when using a coarse grid CFD

type model as forward model. Only one temperature value is reported (and calculated)

in each grid cell. This value represents an average of local temperatures. In order to

compare the output of a coarse grid CFD model to real data, an average of several

measurements has to be made. This results in a large amount of sensors which, although

they can be placed close to the boundaries, can result in practical complications when

implementing the presented methodology.

Another limitation that will have to be investigated further is the additional infor-

mation that has to be provided in order to run the simulations. The more detailed the

requested output of the forward model, the more details about the compartment to

be modelled are required. If the forward model is a zone type fire model, the only

required information about the compartment is its area and height, and the geometry
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of vent openings. When using a CFD type forward model, additional to the detailed

geometry, it is necessary to establish the location of the fire origin and the potential

fuel load before starting the assimilation cycle. While the fire origin can be located

easily (as a first approximation the location of the highest temperature reading can

be used), the fuel load is potentially very variable and its exact distribution might be

impractical to continually keep track of. Fortunately it was shown in chapter 5 that

for relatively small compartments the exact fuel distribution is not essential in order to

produce an adequate forecast, and the fuel load could for example be established based

on a statistical analysis of typical compartment layouts. In larger compartments (relative

to the fuel load), however, an unknown fuel load might lead to early divergence between

forecast and true fire due to a change in the growth pattern of the fire once the fire has

reached the physical boundaries of the fuel. Note that this change can potentially be

assimilated, and the forecast can be readjusted. Thus, it does not constitute a limitation

per se to the proposed methodology, but needs to be further investigated.

In summary, the work presented in this thesis, together with the work of Cowlard [1]

and Koo [2], establishes the basis for sensor assisted fire fighting, but the envisioned

system is not yet fit for operational implementation. It was demonstrated that fire

dynamics can be forecasted if combined with information feedback from the evolving

fire scenario. The observations allow for the use of simplified models that can run

in much shorter time than fully detailed fire models, and can thus provide a forecast

in times comparable to typical fire durations without losing the required accuracy.

Further research has to be done in order to investigate and assure the robustness of the

methodology in real life applications.

The work presented in this document considers only the growth stage of the fire.

For fully developed fires the methodology illustrated here has to be modified in order to

account for the special features of post-flashover fires. An introduction of the future

steps in that direction are given in the next section.
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7.2 Future Work

7.2.1 Experimental Testing

The methodology presented in this document needs to be tested extensively with

experimental data. While the Dalmarnock Tests provide an obvious set of data with

potential for much more exhaustive application of inverse modelling (chapter 6 presents

only an example), they are at the very applied end of the spectrum and it is also necessary

to design and to conduct specific (medium- or small-) scale experiments in order to

assess the robustness of the TLM. In those tests the parameters to be estimated will

have to be measured explicitly, in order to establish convergence rates and error bars.

7.2.2 Inverse Modelling of pre- and post-flashover

Fire dynamics are fundamentally different during the growth phase of the fire and the

fully developed phase of the fire. During the growth phase the flames are localized

and close to the original fuel source of the fire. Heat from the flame is radiated back

to the surface of the fuel feeding the pyrolysis process. The amount of combustible

gases produced depends mostly on the flame geometry and the thermal properties

(heat conduction) of the fuel. The effect of the far field is only important if it affects

for instance the flame geometry (wind blowing in tilting the flame towards a certain

direction), but it can normally be assumed that the boundary conditions of a fire

simulation (walls, ventilation conditions) have only a negligible effect on the fire

growth.

In the fully developed phase of the fire the opposite is the case. Due to the lack of

oxygen the combustible gases cannot burn close to the fuel source and have to travel

until they find the right amount of oxygen to initiate combustion. Thus the flames

are no longer localized, and flaming can occur anywhere within the compartment.

Ventilation conditions of the compartment become the main parameter that governs fire

development.

Due to these fundamental differences, the modelling approach is different, and both

phases of the fire have to be modelled independently.

During the growth phase of the fire the parameters that govern fire development are
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related to the pyrolysis process in the solid phase and the flame geometry. The details

of how to estimate the relevant parameters are given in chapters 4 and 5. There might

be a number of different spread rates (e.g. if the fire spreads vertically over a wall,

the upwards spread rate will be much faster than the sidewards spread rate), and even

several surfaces burning at different spread rates and different burning rates. But the

number of parameters to estimate will not exceed, under any practical circumstances,

the order of 10.

Once the fire is fully developed, and a change in the environment forces the modeller

to update the model with the new information, the simulation has to be restarted. The

initial conditions for the new simulation are not ambient any more, as the fire has

developed for several minutes in the compartment. These initial conditions have to

be considered in the new simulation. In other words, the initial conditions have to be

estimated based on sensor measurements in the compartment. This means that at least

one (normally more than one) parameter (e.g. temperature) has to be estimated for each

grid cell. Depending on the size of the compartment, and the numerical grid considered

for the simulations, the number of initial conditions to be estimated can easily reach

several millions.

7.2.2.1 Gradient based optimization

For gradient based optimization, it is necessary to calculate the derivative of the output

of the model at each point of comparison with respect to each parameter. Let N be

the number of points of comparison (i.e. number of outputs, N = Number sensors×
times of comparison), and M the number of parameters to be estimated. The matrix

of derivatives (Jacobian Matrix) of the model M is

∇M =



∂M1
∂α1

∂M1
∂α2

. . . ∂M1
∂αM

∂M2
∂α1

∂M2
∂α2

. . .
...

... . . .
. . . ...

∂MN
∂α1

. . . . . . ∂MN
∂αM


. (7.1)
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In practical applications the number of points of comparisons N will be of the order of

103 (e.g. 50 sensors × 30 times of comparison).

7.2.2.2 Adjoint modelling

There are several ways of calculating the derivative of a CFD model. The simplest

approach, which is implemented in this thesis, is to use finite differences (FD). In order

to obtain the whole Jacobian using FD, it is necessary to run the model M +1 times

(one for each row).

A different, more sophistic approach is to use algorithmic differentiation [3]. This

technique is based on the fact that a CFD code is nothing else than a (very large) number

of algebraic operations that represent a discretization of the system of partial differential

equations (PDEs) that govern the flow. Thus, the CFD code takes an input (parameters,

initial and boundary conditions), performs a number of algebraic operations, and gives

an output which is an approximation of the solution to the PDEs. It is relatively easy

to calculate the derivative of algebraic operations, so that each of the statements in

the code can be differentiated. The derivative of the code with respect to the input

parameter is then obtained using the chain rule for differentiation. This approach

yields the exact derivative of the model output to one requested parameter (input),

and is thus superior to the FD approach at a similar (probably lower) computational

cost [4]. Implementing algorithmic differentiation could result in an improvement of

the efficiency when computing the TLM. It would however still be necessary to run

the differentiated code M +1 times (one for each parameter, i.e. for each row of the

Jacobian).

An alternative approach is to run the algorithmic differentiation backwards instead of

forwards, and thus obtaining the adjoint of the optimization problem. This is explained

in detail in appendix A. The difference is that in the backwards differentiation (adjoint

modelling) the derivative of one output of the code with respect to all parameters (input),

i.e. one column of the Jacobian, is obtained with one model run. In order to obtain the

whole Jacobian the backwards differentiated code has to be run N +1 times (one for

each output, i.e. for each column of the Jacobian).

129



INVERSE MODELLING TO FORECAST ENCLOSURE FIRE DYNAMICS

7.2.2.3 Summary

During the growth phase of the fire only a few parameters need to be estimated (of

the order of at most 10). Once the fire has developed and flashover has taken place,

changes in the ventilation condition can affect the course of the fire in such a way that it

is necessary to restart the simulations with new boundary conditions. The necessary

initial conditions can be obtained by assimilating measured data into the model. As the

variable values at each grid point have to be estimated, the number of parameters can

reach several millions.

Forward differentiation (which includes finite differences) calculates one row of

the Jacobian with each extra model run. Backwards differentiation (adjoint) calculates

one column of the Jacobian with each extra run. Thus, if more measurement points

for comparison than parameters exist in the model (typically growth phase of the

fire), then it is preferable to use forward differentiation, while if more parameters

than measurement points exist in the model (typically fully developed fire), backwards

differentiation is more efficient.

Automatic differentiation has important advantages over finite differences (accuracy

and efficiency), and it would be desirable to implement the presented methodology

with a forward model that allows for algorithmic differentiation. Forward algorithmic

differentiation can be implemented with reasonable effort with any existing code.

Backwards differentiation, however, is currently limited by the programming scheme

used in the code to be differentiated (pointers and dynamic allocation of variables are

prohibitive). For an efficient estimation of initial conditions, the adjoint of the forward

model would have to be constructed.
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A
Details of the Tangent Linear Model

A.1 Cost Function

Parameters are estimated by minimizing the following cost function that describes the

distance between the model and observations

J (p) =
N∑

i=1

(
yi −Mi (x0,p)

)T (
yi −Mi (x0,p)

)
, (A.1)

where Mi (x0,p) denotes the model (in this case FDS), p ∈ IRP are the parameters to be

estimated, and yi are the observations at time i . Note that yi , Mi ∈ IRM , where M is the

number of observations that is used for assimilation.

Minimization of this cost function can be obtained using a numerical optimization

procedure, such as the Newton–Raphson method for example. The problem with this

method is that it requires the gradient of the cost function to be computed at each step

of the iteration.
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A.2 Tangent Linear Model

If the model is only weakly non-linear close to the parameters that are being estimated,

M (x0,p) can be approximated by a linear function around the first guess for the param-

eter. This is called the Tangent Linear Model (TLM). The cost function (A.1) becomes

thus a quadratic function that can be minimized efficiently and without the need of an

updated gradient.

The linear approximation is obtained from a Taylor expansion around the first guess

pb .

M (x0,p) 'M (x0,pb)+∇pM (x0,pb)
(
p−pb

)
, (A.2)

where ∇pM (x0,pb) ∈ IRP×M is the Jacobian matrix evaluated at pb .

This can then be replaced in the cost function (A.1)

J̃ (p) =
N∑

i=1

(
yi −

[
M (x0,pb)+∇pM (x0,pb)

(
p−pb

)))T

(
yi −

[
M (x0,pb)+∇pM (x0,pb)

(
p−pb

)])
,

(A.3)

As opposed to the Newton–Raphson method, where the minimum of a quadratic

function that is tangent to the original function that is minimized is searched for, the

TLM of the forward model converts the cost function into a quadratic function with a

minimum that is close to the exact minimum of the cost function. Figure A.1 illustrates

the difference between a linearization of the forward model and the Newton–Raphson

method using a nonlinear cost function ( f (x) = (ln(x))2).

A.3 Gradient of the Cost Function

The gradient of the linearized cost function (A.3) is as follows

∇p J̃ (p) = 2
N∑

i=1

(
∇pMi (x0,pb)

)T (
yi −

[
Mi (x0,pb)+∇pMi (x0,pb)

(
p−pb

)])
(A.4)
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Figure A.1: Comparison of Newton–Raphson method for minimization and linearization
of the forward model.

The first order condition for minimization of (A.3) requires the gradient (Eq. (A.4)) to

be zero. Introducing the following notation,

Mi = Mi (x0,pb),

Hi = ∇pMi (x0,pb),

p̃ =
(
p−pb

)

the first order condition can be written as

N∑
i=1

HT
i

(
yi −

[
Mi +Hi p̃

])= 0. (A.5)

The matrix Hi is often referred to as the “Tangent Linear” to the model, while its

transpose, HT
i is the “Adjoint” to the TL matrix.

Developing and rearranging Eq. (A.5) results in
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N∑
i=1

HT
i

(
yi −

[
Mi +Hi p̃

]) = HT
1

(
y1 −

[
M1 +H1p̃

])+HT
2

(
y2 −

[
M2 +H2p̃

])+
·· ·+HT

N

(
yN − [

MN +HN p̃
])= 0

= HT
1

(
y1 −M1 −H1p̃

)+HT
2

(
y2 −M2 −H2p̃

)+
·· ·+HT

N

(
yN −MN −HN p̃

)= 0

= HT
1

(
y1 −M1

)−HT
1 H1p̃+HT

2

(
y2 −M2

)−HT
2 H2p̃+

·· ·+HT
N

(
yN −MN

)−HT
N HN p̃ = 0.

This can be rearranged as

N∑
i=1

HT
i Hi p̃ =

N∑
i=1

HT
i

(
yi −Mi

)
.

Defining

A =
N∑

i=1
HT

i Hi and

b =
N∑

i=1
HT

i

(
yi −Mi

)
,

Eq. (A.5) results in a linear system of the form

Ap̃ = b, (A.6)

which can be solved using a numerical scheme such as the conjugate gradient method.

A.4 For a Single Parameter

In the case that only one parameter is being estimated, Eq. (A.6) reduces to a ·p = b,

and can be solved directly. Rearranging and setting equal to zero Eq. (A.4), p can be
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obtained from the initial guess pb

p = pb +

N∑
j=1

M∑
i=1

∂M
j

i (pb)

∂p

(
y j

i −M
j

i (pb)
)

N∑
i=1

M∑
j=1

(
∂M

j
i (pb)

∂p

)2 (A.7)

A.5 Efficiency Considerations

Obtaining the Jacobian matrix of the model, which is equivalent to the Tangent Linear

Model Hi , can be computationally very expensive. There are different ways of calculat-

ing the derivatives, and the efficiency of choosing one or another can result in important

improvements regarding time and efficiency. The different ways of calculating the

Jacobian matrix consist in using one of the following techniques:

• Finite Difference approximation.

• Tangent Differentiation.

→ First discretize, then differentiate.

→ First differentiate, then discretize.

• Adjoint Model

→ First discretize, then differentiate.

→ First differentiate, then discretize.

A.5.1 Finite Difference

The simplest way of calculating a derivative numerically is taking the finite difference

approach,
∂M

j
i (pb)

∂pk
' M

j
i (pb +εk )−M

j
i (pb)

||εk ||
, (A.8)

where εk ∈ IRP = {0,0, . . . . ,ε, . . . ,0} with a perturbation ε in position k. While this

approach is easy to implement, its accuracy depends on the size of the perturbation and

it requires an additional run of the model for each parameter to be estimated.
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A.5.2 Tangent Differentiation

Alternatively to the finite difference approach, the Jacobian matrix can be obtained by

differentiating the model equations. This can be done either before the equations are

discretized, or afterwards differentiating the discretized equations.

A.5.2.1 Differentiate then discretize

The model equations are differentiated with respect to a parameter pk , yielding an

additional differential equation for each model equation. These can then be discretized

alongside with the model equations.

A.5.2.2 Discretize then differentiate

If the model equations are already discretized, it can often be easier to differentiate the

discrete model equations. Generally a discretized model has the form

xi = f (xi−1, xi−2, . . . , xi−l , pk ), (A.9)

i.e. the value at time (or position) i is obtained based on previously computed x.

Therefore the chain rule can be applied to obtain the derivative

x ′
i =

dxi

dpk
= ∂xi

∂xi−1

dxi−1

dpk
+ ∂xi

∂xi−2

dxi−2

dpk
+·· ·+ ∂xi

∂xi−l

dxi−l

dpk
+ ∂xi

∂pk
. (A.10)

This can then be solved recursively. There are several open source programs that

can transform a computer coded model into a tangent linear model using automatic

differentiation.

As a matter of example, let us assume that the model code takes just one parameter,

and that the underlying equation is of the form f (x) = si n(x2). It is of interest to obtain

d f /dx.

The code would be as follows:

140



APPENDIX. A WOLFRAM JAHN

Listing A.1: Code example

s t a r t program

r e a d ’ i n p u t ’

x1= i n p u t

x2=x1*x1

x3= s i n ( x2 )

end program

Algorithmic differentiation reads each statement of the code, and applies the chain

rule to it, as shown in Table A.1.

x0 = 2 x′0 = ∂x0/∂x0 = 1

x1 = x0 = 2 x′1 = ∂x1/∂x0 = 1

x2 = x2
1 = 4 x′2 = ∂x2/∂x1 ·∂x1/∂x0 = 2x1 · x′1 = 2 ·2 ·1 = 4

x3 = sin(x2) = sin(4) x′3 = ∂x3/∂x2 ·∂x2/∂x0 = cos(x2) · x′2 = cos(4) ·4

=−0.7568 =−2.6146

f (x) = x3 =−0.7568 f ′(x) = ∂ f /∂x0 = ∂ f /∂x3 ·∂x3/∂x0 = x′3 =−2.6146

Table A.1: Forward algorithmic differentiation evaluated in x = 2. The first row corresponds
to the assignment of input parameters, the last row is the output of the code, and the rows in
between are the body of the code.

This code transformation can be done automatically, and the differentiated code

program would be as follows:

Listing A.2: Forward mode dif-

ferentiated code

s t a r t d_program

r e a d ’ i n p u t ’

x1= i n p u t

dx1 =1 .0

x2=x1*x1

dx2 =2* x1*dx1

x3= s i n ( x2 )

dx3= cos ( x2 )* dx2

end d_program
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The derivative of f (x) with respect to x is dx3. It can be seen that the number of

statements is doubled in code d_program with respect to program. Thus it can be

expected that the time to run d_program will take twice as long, which is comparable

to the finite difference approach. Note that this approach also yields one entire row of the

Jacobian matrix for each run. It is always possible to find the algorithmic differentiation

of an existing code, as long as the source files are available. For codes written in

FORTRAN and C++, there are a vast amount of programs available that transform the

original code into differentiated code.

Note that both of the tangent methods are as accurate as the discretization of the

model equations, i.e. no extra truncation error is present. The tangent differentiation

has to be run once for each parameter.

A.5.3 Adjoint Model

When the number of parameters to be estimated is much larger than the observations the

model is compared to, the adjoint approach presents some important advantages. While

the tangent method (the same as the finite differences method) propagates an initial

perturbation of a parameter and yields the sensitivity of the model to this parameter,

the adjoint runs “backwards” and yields the set of perturbations of parameters that are

required to produce a certain perturbation of the model. In terms of efficiency this

means that with one run of the adjoint model the derivative of one model variable with

respect to as many parameters as desired can be obtained. This is particularly interesting

if the initial conditions of the model need to be estimated. In that case the number of

derivatives needed is the number of degrees of freedom of the model. When the adjoint

is obtained, the Tangent Linear is created by transposing the matrix HT
i

A.5.3.1 Differentiate then discretize

The adjoint of a system of partial differential equations (PDE) can be interpreted as the

Lagrange multiplier of a minimization problem, where the model acts as a constraint.

Although the adjoint of any system of PDE always exists, it can be mathematically very

demanding to find it, requiring advanced skills in integral calculus.
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If it is found, an additional differential equation is obtained that has to be solved

alongside the original model equations by some kind of discretization.

A.5.3.2 Discretize then differentiate

Alternatively it is possible to find the adjoint of the discrete model equations. This is

done by applying the chain rule, although in backwards mode. If N is the time at which

the derivative is to be calculated, then x̄i denotes the derivative of xN with respect to xi

x̄i = dxN

dxi
= ∂xN

∂xi
+ dxN

dxN−1

∂xN−1

∂xi
+ dxN

dxN−2

∂xN−2

∂xi
+·· ·+ dxN

dxi+1

∂xi+1

∂xi
. (A.11)

This can again be solved recursively. Many of the automatic differentiation softwares can

produce the adjoint model in backwards mode. However, there are some fundamental

problems when the original code is programmed using advanced programming tools.

Since for the adjoint all the information of the forward integration of the model has to

be saved, it requires an important amount of memory space, and dynamic allocation of

variables and pointers are still subject to active research for adjoint code generation and

are not supported by current automatic differentiation tools [1].

Let us consider again the example of the model code with the underlying equation

of the form f (x) = si n(x2). The reverse mode differentiation is shown in Table A.2.

x0 = 2 x̄0 = ∂ f /∂x0 = ∂ f /∂x1 ·∂x1/∂x0 = x̄1 ·1 =−2.6146

x1 = x0 = 2 x̄1 = ∂ f /∂x1 = ∂ f /∂x2 ·∂x2/∂x1 = x̄2 ·2x1

=−0.6536 ·2 ·2 =−2.6146

x2 = x2
1 = 4 x̄2 = ∂ f /∂x2 = ∂ f /∂x3 ·∂x3/∂x2 = cos(x2) = cos(4)

=−0.6536

x3 = sin(x2) = sin(4) x̄3 = ∂ f /∂x3 = 1

f (x) = x3 =−0.7568 f̄ (x) = ∂ f /∂ f = 1

Table A.2: Reverse algorithmic differentiation evaluated in x = 2. The first row corresponds
to the assignment of input parameters, the last row is the output of the code, and the rows in
between are the body of the code.

This code transformation can be done automatically, and the reversely differentiated

code program would be as follows:
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Listing A.3: Reverse mode dif-

ferentiated code

s t a r t b_program

r e a d ’ i n p u t ’

x1= i n p u t

x2=x1*x1

x3= s i n ( x2 )

bx3 =1 .0

bx2= cos ( x2 )* bx3

bx1=bx2 *2* x1

end b_program

In this case the desired derivative is stored in bx1 which corresponds to x̄0 in

Table A.2. It is important to notice that for the reverse mode to work, it is necessary

to run the whole code normally before calculating the derivative. This means that

potentially a large amount of memory is necessary to store all the variables (the needed

memory is proportional to the size of the variable, i.e. indirectly to the number of grid

cells). Although the methodology is based on the same assumptions of chain rule use as

the forward differentiation, it has the additional requirement that the variables have to

be stored during the whole run of the code (i.e. pointers cannot be used in the code).

Note that in the reverse mode one run of the model gives one entire column of the

Jacobian matrix. In the case that there are more parameters than points of measurements

(M > N ), it is preferable to use the reverse mode, as only N runs of the model are

needed to obtain the Jacobian, whereas the forward mode needs M runs of the model.

Equivalently, if there are more points of measurement than parameters to estimate, it is

more convenient to use the forward or tangent linear approach.

A.5.4 Minimizing a Quadratic Function

If the dimension of the parameter vector p̃ is greater than one, it can be cheaper to solve

the resulting linear system (A.6) using an iterative method rather than inverting the

matrix A.

144



REFERENCES WOLFRAM JAHN

The conjugate gradient method finds the minimum of a quadratic system in P

iterations, P being the dimension of matrix A.
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