138 research outputs found

    Growth Inhibition by Caffeic Acid, One of the Phenolic Constituents of Honey, in HCT 15 Colon Cancer Cells

    Get PDF
    Previous work from our laboratory showed that the mechanism of crude-honey induced apoptosis in colon cancer cells. Since phenolic constituents of honey were attributed to its apoptosis-inducing ability, we studied caffeic acid, one of the phenolic constituents of honey, induced effect on colon cancer cells. Antiproliferative effect of caffeic acid was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. MTT assay signified the antiproliferative nature of caffeic acid against the HCT 15 colon cancer cells. A time-dependent inhibition of colony formation was evident with caffeic acid treatment. Cell-cycle analysis of caffeic acid- (CA-) treated cells indicated increasing accumulation of cells at sub-G1 phase. Photomicrograph images of treated cells showed membrane blebbing and cell shrinkage. Yo-pro-1 staining of caffeic-acid-treated cells confirmed apoptosis in dose- and time-dependent manner. Increasing ROS generation and reduction in the mitochondrial membrane potential were also accompanied in the caffeic acid-induced apoptosis. This work will promote caffeic acid as a likely candidate in the chemoprevention of colon cancer

    Antiproliferative Effects of Honey and of Its Polyphenols: A Review

    Get PDF
    Honey has been used since long time both in medical and domestic needs, but only recently the antioxidant property of it came to limelight. The fact that antioxidants have several preventative effects against different diseases, such as cancer, coronary diseases, inflammatory disorders, neurological degeneration, and aging, led to search for food rich in antioxidants. Chemoprevention uses various dietary agents rich in phytochemicals which serve as antioxidants. With increasing demand for antioxidant supply in the food, honey had gained vitality since it is rich in phenolic compounds and other antioxidants like ascorbic acid, amino acids, and proteins. Some simple and polyphenols found in honey, namely, caffeic acid (CA), caffeic acid phenyl esters (CAPE), Chrysin (CR), Galangin (GA), Quercetin (QU), Kaempferol (KP), Acacetin (AC), Pinocembrin (PC), Pinobanksin (PB), and Apigenin (AP), have evolved as promising pharmacological agents in treatment of cancer. In this review, we reviewed the antiproliferative and molecular mechanisms of honey and above-mentioned polyphenols in various cancer cell lines

    An electrodeposited Au nanoparticle/porous graphene nanoribbon composite for electrochemical detection of alpha-fetoprotein

    Get PDF
    In this work, a novel label-free electrochemical immunosensor for the detection of alpha-fetoprotein (AFP) is fabricated for early diagnosis and prognostics of liver cancer. A porous graphene nanoribbon (PGNR) was synthesized via chemical reduction method and it was electrodeposited with gold nanoparticles (AuNPs) to obtain AuNPs/PGNR hybrid nanomaterial. Anti-AFP was immobilized onto AuNPs/PGNR/glassy carbon electrode and anti-AFP/AuNPs/PGNR/GCE was further studied to demonstrate its electrocatalytic activity towards AFP antigen. PGNR enhances the electroactive surface area and the electron transfer ability between the electrode and redox probe while the AuNPs deposited on PGNR are used to immobilize biomolecules and to facilitate the electron transport. The superior biosensing performance towards AFP under physiological pH condition is demonstrated by a corresponding decreased peak current in differential pulse voltammetry for a wide linear range (5–60 ng/mL) with a low detection limit of 1 ng/mL. Detection of AFP in serum samples by this label-free electrochemical immunosensor without fouling or significant interference implies that the anti-AFP/AuNPs/PGNR modified GCE has a great application potential for clinical diagnosis of AFP

    Unravelling the potential of nitric acid as a surface modifier for improving the hemocompatibility of metallocene polyethylene for blood contacting devices

    Get PDF
    Design of blood compatible surfaces is obligatory to minimize platelet surface interactions and improve the thromboresistance of foreign surfaces when they are utilized as biomaterials particularly for blood contacting devices. Pure metallocene polyethylene (mPE) and nitric acid (HNO3) treated mPE antithrombogenicity and hydrophilicity were investigated. The contact angle of the mPE treated with HNO3 decreased. Surface of mPE and HNO3 treated mPE investigated with FTIR revealed no major changes in its functional groups. 3D Hirox digital microscopy, SEM and AFM images show increased porosity and surface roughness. Blood coagulation assays prothrombin time (PT) and activated partial thromboplastin time (APTT) were delayed significantly (P < 0:05) for HNO3 treated mPE. Hemolysis assay and platelet adhesion of the treated surface resulted in the lysis of red blood cells and platelet adherence, respectively indicating improved hemocompatibility of HNO3 treated mPE. To determine that HNO3 does not deteriorate elastic modulus of mPE, the elastic modulus of mPE and HNO3 treated mPE was compared and the result shows no significant difference. Hence, the overall observation suggests that the novel HNO3 treated mPE may hold great promises to be exploited for blood contacting devices like grafts, catheters, and etc

    Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration

    Get PDF
    Essential oils play an important role in reducing the pain and inflammation caused by bone fracture.In this study, a scaffold was electrospun based on polyurethane (PU), grape seed oil, honey and propolis for bone tissue-engineering applications. The fiber diameter of the electrospun PU/grape seed oil scaffold and PU/grape seed oil/honey/propolis scaffold were observed to be reduced compared to the pristine PU control. FTIR analysis revealed the existence of grape seed oil, honey and propolis in PU identified by CH band peak shift and also hydrogen bond formation. The contact angle of PU/grape seed oil scaffold was found to increase owing to hydrophobic nature and the contact angle for the PU/grape seed/honey oil/propolis scaffold were decreased because of hydrophilic nature. Further, the prepared PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold showed enhanced thermal stability and reduction in surface roughness than the control as revealed in thermogravimetric analysis (TGA) and atomic force microscopy (AFM) analysis. Further, the developed nanocomposite scaffold displayed delayed blood clotting time than the pristine PU in the activated prothrombin time (APTT) and partial thromboplastin time (PT) assay. The hemolytic assay and cytocompatibility studies revealed that the electrospun PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold possess non-Toxic behaviour to red blood cells (RBC) and human fibroblast cells (HDF) cells indicating better blood compatibility and cell viability rates. Hence, the newly developed electrospun nanofibrous composite scaffold with desirable characteristics might be used as an alternative candidate for bone tissue engineering applications

    Multifaceted characterization and in vitro assessment of polyurethane-based electrospun fibrous composite for bone tissue engineering

    Get PDF
    Introduction: Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength.Materials and methods: A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites.Results: FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE.Conclusion: Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering

    Effect of Honey and Eugenol on Ehrlich Ascites and Solid Carcinoma

    Get PDF
    Ehrlich ascites carcinoma is a spontaneous murine mammary adenocarcinoma adapted to ascites form and carried in outbred mice by serial intraperitoneal (i/p) passages. The previous work from our laboratory showed that honey having higher phenolic content was potent in inhibiting colon cancer cell proliferation. In this work, we extended our research to screen the antitumor activity of two selected honey samples and eugenol (one of the phenolic constituents of honey) against murine Ehrlich ascites and solid carcinoma models. Honey containing higher phenolic content was found to significantly inhibit the growth of Ehrlich ascites carcinoma as compared to other samples. When honey containing higher phenolic content was given at 25% (volume/volume) intraperitoneally (i/p), the maximum tumor growth inhibition was found to be 39.98%. However, honey was found to be less potent in inhibiting the growth of Ehrlich solid carcinoma. On the other hand, eugenol at a dose of 100 mg/kg i/p was able to inhibit the growth of Ehrlich ascites by 28.88%. In case of solid carcinoma, eugenol (100 mg/kg; i/p) showed 24.35% tumor growth inhibition. This work will promote the development of honey and eugenol as promising candidates in cancer chemoprevention

    Evaluation of selected honey and one of its phenolic constituent eugenol against L1210 lymphoid leukemia

    Get PDF
    People affected with leukemia are on the rise and several strategies were employed to thwart this deadly disease. Recent decade of research focuses on phenolic constituents as a tool for combating various inflammatory, cancer, and cardiac diseases. Our research showed honey and its phenolic constituents as crusaders against cancer. In this work, we explored the antileukemic activity of selected honey and one of its phenolic constituent eugenol against L1210 leukemia animal model. Results of this experiment showed that the selected honey samples as well as eugenol after intraperitoneal injection could not increase the median survival time (MST) of animals. Further, there was only slight marginal increase in the %T/C values of honey and eugenol treated groups. The number of phenolics present in the honey may not be a prime factor to promote antileukemic effect since there was no difference in the MST of two different honeys tested. This study limits the use of selected honey and eugenol against leukemia animal model

    Electrospun polyurethane nanofibrous composite impregnated with metallic copper for wound-healing application

    Get PDF
    In this study, a wound dressing based on polyurethane (PU) blended with copper sulphate nanofibers was developed using an electrospinning technique. The prepared PU and PU nanocomposites showed smooth fibers without any bead defects. The prepared nanocomposites showed smaller fiber (663 ± 156.30 nm) and pore (888 ± 70.93 nm) diameter compared to the pristine PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). The interaction of PU with copper sulphate was evident in the infrared spectrum through hydrogen-bond formation. Thermal analysis displayed enhanced weight residue at higher temperature suggesting interaction of PU with copper sulphate. The contact angle measurements revealed the hydrophilic nature of the prepared nanocomposites (71° ± 2.309°) compared with pure PU (100° ± 0.5774°). The addition of copper sulphate into the PU matrix increased the surface roughness, as revealed in the atomic force microscopy (AFM) analysis. Mechanical testing demonstrated the enhanced tensile strength behavior of the fabricated nanocomposites (18.58 MPa) compared with the pristine PU (7.12 MPa). The coagulation assays indicated the enhanced blood compatibility of the developed nanocomposites [activated partial thromboplastin time (APTT)—179 ± 3.606 s and partial thromboplastin time (PT)—105 ± 2.646 s] by showing a prolonged blood clotting time compared with the pristine PU (APTT—147.7 ± 3.512 s and PT—84.67 ± 2.517 s). Furthermore, the hemolysis and cytotoxicity studies suggested a less toxicity nature of prepared nanocomposites by displaying low hemolytic index and enhanced cell viability rates compared with the PU membrane. It was observed that the fabricated novel wound dressing possesses better physicochemical and enhanced blood compatibility properties, and may be utilized for wound-healing applications
    corecore