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Abstract 

In this work, a novel label-free electrochemical immunosensor for the detection of alpha-

fetoprotein (AFP) is fabricated for early diagnosis and prognostics of liver cancer. A porous 

graphene nanoribbon (PGNR) was synthesized via chemical reduction method and it was 

electrodeposited with gold nanoparticles (AuNPs) to obtain AuNPs/PGNR hybrid 

nanomaterial. Anti-AFP was immobilized onto AuNPs/PGNR/glassy carbon electrode and 

anti-AFP/AuNPs/PGNR/GCE was further studied to demonstrate its electrocatalytic activity 

towards AFP antigen. PGNR enhances the electroactive surface area and the electron transfer 

ability between the electrode and redox probe while the AuNPs deposited on PGNR are used 

to immobilize biomolecules and to facilitate the electron transport. The superior biosensing 

performance towards AFP under physiological pH condition is demonstrated by a 

corresponding decreased peak current in differential pulse voltammetry for a wide linear 

range (5-60 ng/mL) with a low detection limit of 1 ng/mL. Detection of AFP in serum 

samples by this label-free electrochemical immunosensor without fouling or significant 

interference implies that the anti-AFP/AuNPs/PGNR modified GCE has a great application 

potential for clinical diagnosis of AFP.  

Keywords: Porous graphene nanoribbons, gold nanoparticles, alpha fetoprotein, differential 

pulse voltammetry. 
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1. Introduction  

Alpha fetoprotein (AFP), an oncofetal glycoprotein produced by liver, yolksac, and 

gastrointestinal tract of humans, is considered as a well-known clinical biomarker for 

hepatocellular carcinoma (HCC) [1,2]. The concentration of AFP for a healthy body is 20 ng 

mL-1. The increase of AFP above 500 ng mL-1 in human serum is an indicator of liver tumor. 

Therefore, the concentration of AFP can be used as an early indicator for diagnosis and 

prognostics of HCC and other related diseases like yolk sac cancer, testicular cancer and 

nasopharyngeal cancer [3–5] . This necessitates the development of a reliable method for 

sensitive and selective detection of AFP. Among the various detection methods available, 

such as surface plasmon resonance, quartz crystal microbalance, electrochemical 

immunosensors, atomic absorption spectrometry, chemiluminescence assay and inductively 

coupled plasma mass spectrometry, the electrochemical immunosensor has received much 

attention as the most reliable method for detection of AFP biomarker, owing to its high 

sensitivity, specificity, rapid detection, cost efficiency, low-temperature requirements and 

compact instrumentation [6–10]. Furthermore, compared with sandwich-type immunosensor, 

label-free electrochemical immunosensors have certain advantages, for instance, they could 

be directly used to diagnose and monitor the level of biomarker and avoid interference from 

conjugated markers or other endogenous species [11–13] . 

Graphene nanoribbons (GNR), possessing excellent physical, chemical, mechanical and 

biological properties [14,15], have received tremendous scientific attention in a wide range of 

applications like gas separation, water desalination, energy storage, fuel cells, 

electrochemical capacitors and drug delivery [16,17]. Owing to its high aspect ratio, tunable 

electronic properties, abundant edges, and defect sites and high electron transfer rate, it has 

been considered as a potential electrode material for the fabrication of electrodes in 

electrochemical sensors. Despite its excellent properties, pristine GNR tends to form 

irreversible agglomerates or even restack to form graphite through strong � − �	 bonds and 

van der Waal`s interaction. This agglomeration tendency has a deleterious effect on most of 

its unique properties. . Therefore, tremendous efforts have been taken on the synthesis of 

porous graphene-based materials with unique porous structure providing higher surface area, 

abundant mass transfer channels, tunable bandgap, high pore edge activity, gas permeability, 

good mechanical stability and biochemical sensing [18]. To date, different strategies have 

been successfully developed to prepare porous graphene such as porous graphene nano 

architectures using silver nanoparticles, activation of exfoliated graphene oxide (GO) with 

KOH, hydrothermal steam etching of GO nanosheets, controlled catalytic oxidation, laser 



irradiation and electron beam irradiation [19–23]. Electrochemical activity of PGNR is 

further improved by incorporating noble metal nanoparticles into PGNR. Among numerous 

nanoparticles, AuNPs are considered as an excellent support material due to their remarkable 

surface chemical properties [24], higher chemical stability, excellent catalytic activity[25], 

biocompatibility [26] and other notable properties [27–30].  In this work, for the first time a 

hybrid nanomaterial comprising of porous graphene nanoribbon and AuNPs is fabricated 

through chemical reduction method. Porous graphene nanoribbon was obtained by etching 

Fe2O3NPs/GNR using hydrochloric acid. AuNPs were electrochemically deposited on PGNR 

and the obtained AuNPs/PGNR hybrid nanomaterial was applied as a novel immunosensor 

electrode to detect AFP.  

2. Materials and Methods 

2.1 Materials 

Alpha-fetoprotein antibody and antigen were purchased from Biocell Co. (Zhengzhou, 

China). Bovine serum albumin (BSA, 96–99%) and multi-walled carbon nanotubes 

(MWCNT), carbon > 95% 6 - 9 nm O.D x 5 µm L were procured from Sigma (USA). 

Phosphate buffer solution (PBS), conc. sulphuric acid (H2SO4), 88% ACS ortho phosphoric 

acid (H3PO4), iron sulphate (FeSO4), potassium permanganate (KMnO4), 30% hydrogen 

peroxide (H2O2), 35% hydrochloric acid (HCl), 98% hydrazine hydrate (NH2)2: H2O, 

chloroauric acid (HAuCl4) potassium ferrocyanide (K4Fe(CN)6) and potassium ferricyanide 

(K3Fe(CN)6)  were purchased from Merck India. All the electrolytes were prepared with 

ultrapure water (>18 M Ω cm) from a Millipore Milli-Q water purification system. 

2.2 Experimental 

2.2.1 Synthesis of porous graphene nanoribbon  

As illustrated in Figure 1, 300 mg of graphene oxide nanoribbons (GONR) (Figure S1) 

obtained by unzipping of multiwalled carbon nanotube via improved method [31] was mixed 

with      0.01 M FeSO4.7H2O stock solution in which 2.8 g of FeSO4.7H2O was dissolved in 1 

mL concentrated sulfuric acid. After sonicating for 1 h, iron hydroxide GONR mixture 

obtained by the following reaction was kept under stirring with 10 mL hydrazine hydrate for 

12 h at 80° C in nitrogen atmosphere. 

  

 The reduced iron oxide/graphene nanoribbon (Fe2O3/GNR) nanocomposite was rinsed with 

distilled water, acetone and vacuum dried for 24 h at room temperature. Finally, porous 



structured GNR was obtained through the removal of iron particles by stirring Fe2O3/GNR 

nanocomposite with 10 mL of 15% concentrated HCl for 6 h. It was further rinsed with 

distilled water and acetone before vacuum dried at room temperature for 24 h. 

 

Figure 1. Schematic representation of the synthesis of AuNPs/PGNR. 

2.2.2 Electro deposition of AuNPs on PGNR 

The AuNPs, an immobilization platform for biomolecules, was electrochemically deposited 

on PGNR by performing amperometry at a constant potential of -0.2 V for 120 s in 0.5 M 

H2SO4 with 1 g HAuCl4 [29].  

2.3 Characterization 

The morphology and elemental compostion of the as-synthesized materials were 

characterised by high resolution scanning electron microscopy (HRSEM) (FEI Quanta FEG 

200, HRSEM) and Energy Dispersive X-Ray spectra (EDX) were recorded by JEOL JSM-

6700F microscope (Japan).The phase composition of all samples was determined by X-ray 

diffraction (XRD), PANalytical X-ray diffractometer X'Pert with a Cu Kα radiation (λ = 

1.5406 Å). The Brunauer Emmett Teller (BET) surface area was measured by BELSORP-

mini II (BEL Japan, Inc.) using N2 as the adsorption gas. The structural properties of the 

samples was carried out using Raman spectroscopy WiTech alpha 300 CRF System excited 

at 532 nm. All Electrochemical measurements were conducted using a potentiostat/ 

galvanostat PG 302N, AUT 83909 (Metrohm, Autolab, Netherlands) with a conventional 

three-electrode system in the presence of electrolyte, PBS aqueous solution, of pH 7.4.  

2.3 Fabrication of immunosensor 

The working electrode of the electrochemical immunosensor was fabricated as follows: GCE 

polished with 0.3 mm and 0.05 mm gamma alumina particles which was rinsed and sonicated 

using distilled water, ethanol; and dried under a stream of nitrogen.  



Figure 2. Schematic representation of the AuNPs/PGNR/GCE electrochemical immunosensor 

for the detection of AFP. 

GCE was modified by coating with 7 µL suspension of GONR, GNR and PGNR dispersed 

separately in DMF (1 mg/ 2 mL) by drop casting method on the electrode surface and was 

dried at room temperature under vacuum. The stepwise assembly of the 

proposed immunosensor is illustrated in Figure 2. Firstly, AuNPs were 

deposited on PGNR modified electrode and then dried in air. Next, 6 µL of anti-AFP 

(100 µg mL-1) was cast on AuNPs/PGNR/GCE modified electrode surface and incubated 

for 1h. Subsequently, to avoid interaction between anti-AFP/AuNPs/PGNR/GCE and non-

specific adsorbed antigens, the fabricated immunosensor was incubated for 1 h in 4 µL of 

0.25% bovine serum albumin (BSA). After rinsing with PBS, the 

fabricated immunosensor was ready for measurement. The fabricated immunosensor was 

stored at 4 °C when not in use. The electrochemical signal response was recorded by 

differential pulse voltammetry (DPV) in the PBS at pH=7.4, in a potential range of                       

0.2 to 1.2 V.  

3 Results and Discussion 

3.1 Morphological studies 

The morphology and elemental composition of Fe2O3/GNR and PGNR observed by HRSEM 

are illustrated in Figure 3. Figure 3(a) clearly shows that the Fe2O3 particles with a size of 

about 40-50 nm are randomly distributed onto the surface of GNR.  



 

 

 

Figure 3 HRSEM images of (a) Fe2O3/GNR (b) PGNR with their respective EDX (c & d) 

The porous structure, generated upon removal of Fe nanoparticles from Fe2O3/GNR 

was validated from the HRSEM image observed in Figure 3(b)) [32,33]. The porous 

structured PGNR not only increases the specific surface area, but also prevents agglomeration 

tendency of graphene nanoribbons. Furthermore, the corresponding energy dispersive X-ray 

EDX analysis of Fe2O3/GNR shown in Figure 3(c), exhibiting strong peaks of C, O and Fe, 

suggests the formation of a Fe2O3/GNR hybrid. Moreover, the EDX measurement of PGNR 

clearly (Figure 3(d)) evidences the effective removal of Fe particles. 



 

Figure 4 HRSEM image of (a) AuNPs/PGNR its respective elemental mapping and EDX 

(b & c) 

The morphology of AuNPs/PGNR as observed in Figure 4 (a) reveals that spherical shaped 

AuNPs with a diameter of 30 to 40 nm are homogeneously decorated on the PGNR. 

Elemental quantification with mapping further illustrates the uniform deposition 

of AuNPs over PGNR surface in AuNPs/PGNR hybrid (Figure 4(b)). Moreover, EDX 

analysis of the AuNPs/PGNR hybrid confirms the presence of the Au element along with C 

in the AuNPs/PGNR hybrid (Figure 4(c)). 

3.2 XRD 

The crystal structure of GONR, Fe2O3/GNR and PGNR were studied by XRD and elucidated 

in Figure S2. The XRD pattern of GONR is illustrated in Figure S2(a) displays a diffraction 

peak at 2θ=8°, corresponding to unzipping of MWCNT. The diffraction peaks of obtained 

Fe2O3/GNR hybrid depicted in Figure S2(b) at 2θ of 33.2°, 35.6°, 40.8°, 49.5°, 54.1° and 

62.5° corresponding to (104), (110), (113), (024), (116) and (214) crystal planes, 

respectively reveals the well crystalline nature of hematite phase (JCPDS no. 97-002-2505) 



[34,35]. The diffraction peak at around 25° corresponding to (002) plane 

in PGNR, indicates a successful synthesis of PGNR (Figure S2(c)). 

3.3 Raman spectroscopy 

The information about the structural properties of modified GONR was acquired from Raman 

spectroscopy. As shown in Figure S3, the Raman spectra of GONR, Fe2O3/GNR and 

PGNR display two prominent peaks, corresponding to D and G bands. The G band at              

1570   cm-1 represents the first order scattering of the E2g mode of sp2 C atoms and the D 

band at 1336 cm−1 is due to the structural imperfection of the A1g mode. From the intensity of 

G band (IG) and D band (ID), the average crystallite size of the sp2 domains in graphene based 

materials was measured by the well-known Tuinstra and Koenig (TK) relation.     

L� = 4.956 �I�I�� 

Where, La represents the average crystallite size of sp2 domains and the value 4.956 was 

obtained from the equation C(λ)= -12.6+0.33 λ. λ indicates the laser wavelength, 532 nm.  

The average crystallite size of sp2 domains in GONR, Fe2O3/GNR and PGNR is calculated as 

8.26, 5.98 and 4.54 nm, respectively. Reduced average crystallite size in the case of PGNR, 

compared to Fe2O3/GNR and GONR, results in the formation of defects and disorders after 

modification of GONR [36,37]. 

Moreover, the ratio between the intensity of D and G band was effectively used 

to evaluate the degree of disorder in the given samples. ID/IG ratio of GONR was increased 

from 0.6 to 0.92 & 1.09 for Fe2O3/GNR hybrid and PGNR respectively. The increased ID/IG 

ratio reveals the increased disorder and defect density generated during the transformation 

of sp2 to sp3 configuration and additional defects introduced in each step of modification. 

3.4 Surface area analysis 

The nitrogen adsorption/desorption isotherm of the PGNR displays a typical IUPAC type-IV 

adsorption isotherm pattern with a hysteresis loop, suggests an increase in the specific surface 

area of PGNR as 132 m2 g-1 by the BET measurement, whereas the specific surface area 

of reduced graphene oxide (RGO) was only 20 m2g-1. The increased surface area 

of PGNR further confirms that the porous structure effectively prevents 

the restacking property of GNR. 

3.5 Optimization of experimental conditions 

To achieve better electrochemical performance, it is necessary to optimize the pH and 

concentration of PGNR, which influence the electron transfer and activity of AFP and anti-

AFP. However, acidic or alkaline pH value of buffer would damage the immobilized protein, 



the experiment was optimized by PBS at different pH between 5.0 and 8.0. The current 

responses obtained from CV towards different pH shown in Figure S4 (a) reveals that the 

peak current increases with increase in pH from 6 to 7.5. After reaching a maximum value at 

pH 7.5, the peak current decreased with further increase of pH, indicating the optimum pH of 

7.5 for this immunosensor. Thus, PBS at physiological pH 7.4 which is closest to 7.5 was 

used as the electrolyte for electrochemical measurement throughout this study. 

In addition, the effect of PGNR concentration on the electrochemical response of the 

immunosensor was also investigated. As shown in Figure S4(b), with an increase 

in PGNR concentration from 0.5 to 2 mg/mL, the current response increased, with further 

increase in concentration, the electroactive sites on the electrode get decreased, resulting in a 

decrease in the current response. Therefore, optimal concentration of 2 mg/mL PGNR 

solution was preferred for further experiments in this study.  

3.6 Electrochemical characterization of the immunosensor 

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) depicted in 

Figure S5 and Figure S6 evidence the stepwise fabrication of immunosensor. Maximum peak 

current observed in CV of AuNPs/PGNR/GCE (Figure S5, curve a) indicates its enhanced 

electrocatalytic property. A gradual decrease in peak current observed in anti-

AFP/AuNPs/PGNR/GCE (Figure S5, curve b), and BSA/anti-AFP/AuNPs/PGNR/GCE 

(Figure S5, curve c) indicates the successful immobilization of anti-AFP and BSA on the 

electrode. Further, a decrease in peak current observed after detection of AFP on BSA/anti-

AFP/AuNPs/PGNR/GCE demonstrates the antibody–antigen reaction and successful 

fabrication of immunosensor (Figure S5, curve d). The decrease in peak current in each step 

of fabrication is due to the hindrance observed towards the transfer of electrons. 

The step wise fabrication of the immunosensor was further characterized by EIS via Nyquist 

plots (Figure S6), which was recorded from 1 to 105 Hz in a solution containing 0.1 M PBS 

(pH 7.4) of [Fe(CN)6]
3-/4-.The obtained data of all the modified electrodes were fitted by a 

Randles equivalence circuit model, including the Warburg impedance (Zw), the charge 

transfer resistance (Rct), the double layer capacitance (Cdl) and ohmic resistance of the 

electrolyte (Rs). The EIS includes a semicircle portion and a line. The semicircle portion at 

higher frequency expresses the electron-transfer limited process, and the corresponding 

diameter is equal to the Rct. After fitting the data the Rct value of 3200 Ω (curve a) observed 

in bare GCE implies a low-charge-transfer resistance of the redox couple. PGNR/GCE, 

AuNPs/PGNR/GCE modified electrodes shows a decrease in Rct to 320 Ω and 175 Ω (curve 

b and c) respectively, indicating enhanced conductivity of both the modified electrode. 



Anti-AFP immobilized on AuNPs/PGNR/GCE, blocks the active sites of the modified 

electrode and hinders the interfacial electron transfer between the redox probe and the 

modified electrode, thereby increase the charge transfer resistance to 6600 Ω (curve c). 

Further increase in Rct to 13000 Ω observed after incubating a non-conductive bioactive 

substance BSA on anti-AFP/AuNPs/PGNR/GCE indicates the successful immobilization of 

BSA on the electrode (curve d). Increase in the Rct to 18300 Ω observed after sensing of AFP 

on BSA/anti-AFP/AuNPs/PGNR/GCE (curve e) demonstrates the effective specific 

recognition between antibodies and antigens.  

3.7 Concentration studies 

 

 

Figure 5 DPV of the fabricated immunosensor at different concentrations of AFP from 5 to 

60 ng/mL (a) and the respective calibration curves between peak current and concentration of 

AFP (b). 

Under optimal conditions, the performance of the prepared immunosensor was examined by 

DPV. The fabricated immunosensor was implemented for the detection of AFP antigen with 

different concentrations from 5 to 60 ng/ml. Figure 5 (a) showed the electrochemical current 

responses obtained from DPV towards the addition of AFP antigen for the concentration 

range of 5 to 60 ng/mL. 

The decrease in peak current observed with an increase in AFP concentration as shown in 

Figure 5(a), indicates the non-conducting antigen AFP bound to the antibody hinders the 

electron transfer efficiency. The corresponding calibration plots displayed in Figure 5(b) 

implies a good linear relationship for a concentration range of 5-60 ng.mL-1 between 

electrochemical current responses and the AFP concentration with a correlation coefficient of 

R2 =0.99 and a limit of detection of 1 ng/mL. 

 



3.8 Selectivity, stability and repeatability 

The immunosensor selectivity could be investigated with 10 ng/mL AFP in the presence 

of interfering agents, which potentially coexist with AFP in human serum. The interfering 

agents like UA, DA, AA and glucose were incubated with 10 ng/mL AFP. Negligible change 

in the current value demonstrated (Figure S7) towards the interfering substances, indicates 

the high selectivity of as fabricated immunosensor towards AFP. The repeatability of 

the immunosensor was evaluated (Figure S8), using five electrodes for the detection of AFP 

(10 ng/mL). Obtained current response elucidates the excellent repeatability of this 

immunosensor, with relative standard deviation (RSD) less than 5%. The long-term storage 

stability of immunosensor, stored in PBS (pH 7.4) at 4oC, was also determined by measuring 

the current response after 30 days. The current response measured every six days as 

demonstrated in Figure S9, implies a very little decay in the peak currents (barely 5.3%). This 

clearly shows that proposed immunosensor retains excellent stability over a period of 30 days 

with 90.6 % current response. 

We speculate that the long-term stability and repeatability of the BSA/anti-

AFP/AuNPs/PGNR modified immunosensor could be ascribed to three reasons: (1) 

the BSA/anti-AFP/AuNPs/PGNR film has good stability, (2) the biocompatibility of the 

AuNPs/PGNR is excellent, and (3) the antibody is tightly attached to the electrode. The 

better repeatability, high selectivity and good stability confirmed that the as-

prepared immunosensor is suitable for quantitative determination of AFP in real human 

samples. The performance of the PGNR/AuNPs immunosensor was compared with other 

nanomaterial (Table 1). It can be seen, that the developed immunosensor exhibited 

comparable linear range and lower detection limit. 

Table 1. The performance comparison of the developed immunosensor with other different 

Au based AFP immunosensor 

S.No Electrode material Linear range Limit of 
detection 

Reference  

1 Au/AET/PAMAM 5–500 ng/mL 3 ng/mL [38] 

2 Au/PA 5–80 ng/ml 3.7ng/mL [39] 

3 HRP-MPS/PVA/ITO 1-90 ng/mL 0.5 ng/mL [40] 

4 Self–assembled 

monolayers 

AuNPs/HRP 

15–350 ng/mL 5 ng/mL [41] 

5 PdNi/N-GNRs 0.0001–16 ng/mL 0.03 pg/mL [42] 



6 Pd nanoplates 0.01 

to 75.0 ng/mL 

4 pg/mL [43] 

7 Pd–rGO 0.01to12 ng/mL. 5 pg/mL [44] 

8 AuNPs/PGNR 5-60 ng/mL 1 ng/mL This work 

 

3.9 Real sample analysis 

The reliability and precision of the immunosensor for real sample analysis are investigated by 

standard addition method to detect the recoveries of different concentrations of AFP in the 

human serum sample. The results obtained are tabulated in Table 2. The recovery of the 

spiked sample ranging between 99.9% and 102 %, validates the applicability of the proposed 

immunosensor for real sample analysis. 

Table 2 Determination of AFP added in human blood serum with the proposed 

immunosensor. 

Sample Added (ng/mL) Found (ng/mL) Recovery (%) 

1 1 1.02±0.03 102 

2 5 4.98±0.02 100.4 

3 10 9.96±0.09 100.4 

4 15 14.98±0.19 100.1 

5 20 20.02±0.45 99.9 

 

4 Conclusion 

A novel electrochemical immunosensor based on AuNPs/PGNR/GCE for the sensitive 

detection of HCC displayed a wide range of linear response (5-60 ng/ml) and a low detection 

limit (1 ng/mL). The immobilized anti-AFP molecules exhibited an excellent electrochemical 

response selective to the AFP in pH 7.4. The fabricated immunosensor exhibited high 

sensitivity, good repeatability, and long-term stability in quantitative detection of AFP. 
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Highlights 

• A novel porous graphene nanoribbon was obtained via chemical reduction method 

• AuNPs electrodeposited on porous graphene nanoribbon acts as platform for 

immobilizing biomolecule 

• Porous graphene nanoribbon/AuNPs can be used for detection of AFP in human 

serum. 
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