68 research outputs found

    Wide-bandgap halide perovskites for indoor photovoltaics

    Get PDF
    LJ acknowledges the funding through the UKRI-Future Leaders Fellowship (MR/T022094/1).Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.Publisher PDFPeer reviewe

    Cathodoluminescence hyperspectral imaging on the nanometre scale

    Get PDF
    Extending cathodoluminescence microscopy into the hyperspectral imaging mode brings significant benefits to an already powerful nano-scale characterization tool. In this paper, we give an introduction to the technique, and illustrate its potential with examples of its application to both semiconducting and plasmonic nanostructures

    Hysteresis in hybrid perovskite indoor photovoltaics

    Get PDF
    L.K.J. acknowledges funding from UKRI-FLF through grant no MR/T022094/1.Halide perovskite indoor photovoltaics (PV) are a viable solution to autonomously power the billions of sensors in the huge technology field of the Internet of Things. However, there exists a knowledge gap in the hysteresis behaviour of these photovoltaic devices under indoor lighting conditions. The present work is the first experimental study dedicated to exploring the degree of hysteresis in halide perovskite indoor photovoltaic devices by carrying out both transient J-V scan and steady state maximum power point tracking (MPPT) measurements. Dependence of hysteresis on device architecture, selection of electron transporting layers and the composition of the perovskite photoactive layers were investigated. Under indoor illumination, the p-i-n MAPbI3-based devices show consistently high power conversion efficiency (PCE) (stabilized PCE) of greater than 30% and negligible hysteresis behaviour, whereas the n-i-p MAPbI3 devices show poor performance (stabilized PCE ∌ 15%) with pronounced hysteresis effect. Our study also reveals that the n-i-p triple cation perovskite devices are more promising (stabilized PCE ∌ 25%) for indoor PV compared to n-i-p MAPbI3 due to their suppressed ion migration effects. It was observed that the divergence of the PCE values estimated from the J-V scan measurements, and the maximum power point tracking method is higher under indoor illumination compared to 1 Sun, and hence for halide perovskite-based indoor PV, the PCE from the MPPT measurements should be prioritized over the J-V scan measurements. The results from our study suggest the following approaches for maximizing the steady state PCE from halide perovskite indoor PV: (i) select perovskite active layer composition with suppressed ion migration effects (such as Cs-containing triple cation perovskites) and (ii) for the perovskite composition such as MAPbI3, where the ion migration is very active, p-i-n architecture with organic charge transport layers is beneficial over the n-i-p architecture with conventional metal oxides (such as TiO2, SnO2) as charge transport layers. This article is part of the theme issue 'Developing resilient energy systems'.Publisher PDFPeer reviewe

    Interface limited hole extraction from methylammonium lead iodide films

    Get PDF
    Small solar cells based on metal halide perovskites have shown a tremendous increase in efficiency in recent years. These huge strides in device performance make it important to understand processes such as accumulation and extraction of charge carriers to better address the scalability and stability challenges which have not been solved yet. In most studies to date it is unclear whether the limiting factor of charge extraction is charge transport in the bulk of the perovskite or transfer across the interface with the charge extracting layer, owing largely to the inaccessibility of buried interfaces. Separating bulk and interfacial effects on charge extraction can help the search for new charge extracting materials, improve understanding of charge transport in active layer materials and help optimise device performance; not only in the laboratory setting but also for commercial production. Here we present a method to unambiguously distinguish between bulk and interface effects on charge extraction dynamics which is based on time-resolved photoluminescence with different excitation density profiles. We use this method to study charge extraction from solution-deposited CH3NH3PbI3 films to NiO and PEDOT:PSS layers. We find that NiO shows faster hole extraction than PEDOT:PSS from the 300 nm thick perovskite film on the time scale of 300 ps which is independent of charge carrier density in the region of 1016–1017 cm−3. The interface with NiO is found to only slightly limit charge extraction rate at charge densities exceeding 1016 cm−3 as the extraction rate is fast and does not decrease with time. This is in contrast to PEDOT:PSS where we find the charge extraction rate to be slower, decreasing with time and dependent on charge density in the region 1016–1017 cm−3 which we interpret as charge accumulation at the interface. Hence we find that charge extraction is severely limited by the interface with PEDOT:PSS. These findings are confirmed by transient absorption spectroscopy. A hole diffusion coefficient of D = (2.2 ± 0.5) cm2 s−1 was determined in the perovskite film that is independent of charge density. This indicates a band-like hole transport regime, not observed for solution processed films before. Our findings stress the importance of interface optimization in devices based on perovskite active layers as there is still room for improvement of the hole extraction rate even in the case of the superior NiO layer

    Correlating photovoltaic properties of PTB7-Th:PC71BM blend to photophysics and microstructure as a function of thermal annealing

    Get PDF
    Selective optimisation of light harvesting materials and interface properties has brought breakthroughs in power conversion efficiency (11–12%) of organic photovoltaics (OPVs). However to translate this promising efficiency to economically viable applications, long term stability is a fundamental requirement. A number of degradation pathways, both extrinsic and intrinsic, reduce the long term stability of OPVs. Here, the photovoltaic properties of a highly efficient bulk heterojunction PTB7-Th:PC71BM blend were investigated as a function of ex situ thermal annealing. The changes in charge generation, separation, and transport due to thermal annealing were measured and related to changes in the microstructure and photovoltaic performance. A 30% drop in the power conversion efficiency of PTB7-Th:PC71BM blends upon thermal annealing at 150 °C was identified as mainly due to morphological instability induced by strong phase separation of donor and acceptor molecules of the blend films. Based on the insight gained from these investigations, enhanced thermal stability was demonstrated by replacing the PC71BM fullerene acceptor with a non-fullerene acceptor ITIC, for which power conversion efficiency dropped only by 9% upon thermal annealing at 150 °C

    Nanoscale heterogeneity in CsPbBr3 and CsPbBr3:KI perovskite films revealed by cathodoluminescence hyperspectral imaging

    Get PDF
    Funding: We are grateful for funding from the EPSRC under grant code EP/L017008/1. Dr. L. K. Jagadamma acknowledges support from a Marie SkƂodowska-Curie Individual Fellowship (European Commission) (MCIF: No. 745776).The nanoscale morphology of solar cell materials strongly affects their performance. We report direct evidence for the existence of multiple length scales of heterogeneity in halide perovskites such as CsPbBr3 and CsPbBr3:KI. Contrary to the general notion of two distinct phases, our study suggests the presence of multiple phases in mixed halide perovskites. Highly spatially resolved (≈50 nm) cathodoluminescence maps reveal that the length scale of heterogeneity is composition dependent: smaller (≈ 200 nm) for CsPbBr3, and larger (≈500–1000 nm) for CsPbBr3:KI. Moreover, these nano-/micro-scale heterogeneities exist both laterally and vertically in mixed halides and correlate with high densities of carrier traps and fast trap-assisted recombination. The observed heterogeneities also lead to reduced power conversion efficiency of solar cells, higher hysteresis loss, and faster degradation. These insights argue for advanced nanoscale characterization of halide perovskites to guide reduction of heterogeneity and so improve device performance and stability.PostprintPeer reviewe

    Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers

    Get PDF
    We are grateful to the European Commission for financial support through the grant, EXCITON 321305. Dr. L.K.Jagadamma acknowledges support from a Marie SkƂodowska-Curie Individual Fellowship (European Commission) (MCIF: No. 745776). We are also grateful to EPSRC for an equipment grant (EP/L017008/1).Hybrid perovskites have received tremendous attention due to their exceptional photovoltaic and optoelectronic properties. Among the two widely used perovskite solar cell device architectures of n-i-p and p-i-n, the latter is interesting in terms of its simplicity of fabrication and lower energy input. However this structure mostly uses PEDOT:PSS as a hole transporting layer which can accelerate the perovskite solar cell degradation. Hence the development of stable, inorganic hole extraction layers (HEL), without compromising the simplicity of device fabrication is crucial in this fast-growing photovoltaic field. Here we demonstrate a low temperature (~100 °C) solution - processed and ultrathin (~6 nm) NiO nanoparticle thin films as an efficient HEL for CH3NH3PbI3 based perovskite solar cells. We measure a power conversion efficiency (PCE) of 13.3% on rigid glass substrates and 8.5% on flexible substrates. A comparison with PEDOT:PSS based MAPbI3 solar cells (PCE ~ 7.9%) shows that NiO based solar cells have higher short circuit current density and improved open circuit voltage (1.03 V). Apart from the photovoltaic performance under 1 Sun, the efficient hole extraction property of NiO is demonstrated for indoor lighting as well with a PCE of 23.0% for NiO based CH3NH3PbI2.9Cl0.1 p-i-n solar cells under compact fluorescent lighting. Compared to the perovskite solar cells fabricated on PEDOT:PSS HEL, better shelf-life stability is observed for perovskite solar cells fabricated on NiO HEL. Detailed microstructural and photophysical investigations imply uniform morphology, lower recombination losses, and improved charge transfer properties for CH3NH3PbI3 grown on NiO HEL.PostprintPeer reviewe

    Correlating photovoltaic properties of PTB7-Th:PC71BM blend to photophysics and microstructure as a function of thermal annealing

    Get PDF
    We acknowledge support from EPSRC (grant number EP/L012294/1) and the European Research Council (grant number 321305). I.D.W.S. also acknowledges a Royal Society Wolfson Research Merit Award. VS acknowledges support from the Office of Naval Research NDSEG fellowship. Research data supporting this paper is available at doi http://dx.doi.org/10.17630/eadf56f3-8c70-47da-ac6d-67f2d78b3f74Selective optimisation of light harvesting materials and interface properties has brought breakthroughs in power conversion efficiency (11-12 %) of organic photovoltaics (OPVs). However to translate this promising efficiency to economically viable applications, long term stability is a fundamental requirement. A number of degradation pathways, both extrinsic and intrinsic, reduce the long term stability of OPVs. Here, the photovoltaic properties of a highly efficient bulk heterojunction PTB7-Th:PC71BM blend were investigated as a function of thermal annealing. The changes in charge generation, separation, and transport due to thermal annealing were measured and related to changes in the microstructure and photovoltaic performance. A 30 % drop in power conversion efficiency of PTB7-Th:PC71BM blends upon thermal annealing at 150 oC was identified as mainly due to morphological instability induced by strong phase separation of donor and acceptor molecules of the blend films. Based on the insight gained from these investigations, enhanced thermal stability was demonstrated by replacing the PC71BM fullerene acceptor with the non-fullerene acceptor ITIC, for which power conversion efficiency dropped only by 9 % upon thermal annealing at 150 oC.PostprintPeer reviewe

    Lead-free perovskite-inspired semiconductors for indoor light-harvesting - the present and the future

    Get PDF
    G. K. G. thanks Tampere Institute for Advanced Study for the postdoctoral funding. P. V. and V. S. acknowledge the financial support of Jane and Aatos Erkko foundation (SOL-TECH project) and Academy of Finland (Decision No. 347772). B.A-A. thanks Vilho, Yrjö and Kalle VĂ€isĂ€lĂ€ Fund of the Finnish Academy of Science and Letters for the financial support. This work is part of the Academy of Finland Flagship Programme, Photonics Research and Innovation (PREIN), Decision No. 320165.Are lead-free perovskite-inspired materials (PIMs) the wise choice for efficient yet sustainable indoor light harvesting? This feature article outlines how wide-bandgap PIMs can provide a positive answer to this compelling question. The wide band gaps can hinder sunlight absorption, in turn limiting the solar cell performance. However, PIMs based on group VA of the periodic table can theoretically lead to an outstanding indoor power conversion efficiency up to 60% when their band gap is ∌2 eV. Yet, the research on PIM-based indoor photovoltaics (IPVs) is still in an early stage with highest indoor device efficiencies up to 10%. This article reviews the recent advancements on PIMs for IPVs and identifies the main limiting factors of device performance, thus suggesting effective strategies to address them. We emphasize the poor operational stability of the IPV devices of PIMs being the key bottleneck for the vast adoption of this technology. We believe that this report can provide a solid scaffolding for further researching this fascinating class of materials, ultimately supporting our vision that, upon extensive advancement of the stability and efficiency, PIMs with wide bandgap will become a contender for the next-generation absorbers for sustainable indoor light harvesting.Publisher PDFPeer reviewe

    Engineered exciton diffusion length enhances device efficiency in small molecule photovoltaics

    Get PDF
    n organic photovoltaic blends, there is a trade-off between exciton harvesting and charge extraction because of the short exciton diffusion length. Developing a way of increasing exciton diffusion length would overcome this trade-off by enabling efficient light harvesting from large domains. In this work, we engineered (enhanced) both exciton diffusion length and domain size using solvent vapour annealing (SVA). We show that SVA can give a three-fold enhancement in exciton diffusion coefficient (D) and nearly a doubling of exciton diffusion length. It also increases the domain size, leading to enhancement of charge extraction efficiency from 63 to 89%. Usually larger domains would reduce exciton harvesting but this is overcome by the large increase in exciton diffusion, leading to a 20% enhancement in device efficiency
    • 

    corecore