9,349 research outputs found
On the relation between nuclear and nucleon Structure Functions and their moments
Calculations of nuclear Structure Functions (SF) F_k^A(x,Q^2) routinely
exploit a generalized convolution, involving the SF for nucleons F_k^N and the
linking SF f^{PN,A} of a fictitious nucleus, composed of point-particles, with
the latter usually expressed in terms of hadronic degrees of freedom. For
finite Q^2 the approach seemed to be lacking a solid justification and the same
is the case for recently proposed, effective nuclear parton distribution
functions (pdf), which exactly reproduce the above-mentioned hadronically
computed F_k^A. Many years ago Jaffe and West proved the above convolution in
the Plane Wave Impulse Approximation (PWIA) for the nuclear components in the
convolution. In the present note we extend the above proof to include classes
of nuclear Final State Interactions (FSI). One and the same function appears to
relate parton distribution functions (pdf) in nuclei and nucleons, and SF for
nuclear targets and for nucleons. That relation is the previously conjectured
one,with an entirely different interpretation of f^{PN,A}. We conclude with an
extensive analysis of moments of nuclear SF based on the generalized
convolution. Characteristics of those moments are shown to be quite similar to
the same for a nucleon. We conclude that the above evidences asymptotic freedom
of a nucleon in a medium and not of a composite nucleus.Comment: 18 pages, 9 figure
Monopole Planets and Galaxies
Spherical clusters of SU(2) BPS monopoles are investigated here. A large
class of monopole solutions is found using an abelian approximation, where the
clusters are spherically symmetric, although exact solutions cannot have this
symmetry precisely. Monopole clusters generalise the Bolognesi magnetic bag
solution of the same charge, but they are always larger. Selected density
profiles give structures analogous to planets of uniform density, and galaxies
with a density decaying as the inverse square of the distance from the centre.
The Bolognesi bag itself has features analogous to a black hole, and this
analogy between monopole clusters and astrophysical objects with or without
black holes in their central region is developed further. It is also shown that
certain exact, platonic monopoles of small charge have sizes and other features
consistent with what is expected for magnetic bags.Comment: 23 pages. Revised version to appear in Physical Review D. New
introduction and conclusions; analogy between monopoles and astrophysical
objects developed furthe
Low-temperature phase transformations of PZT in the morphotropic phase-boundary region
We present anelastic and dielectric spectroscopy measurements of
PbZr(1-x)Ti(x)O(3) with 0.455 < x < 0.53, which provide new information on the
low temperature phase transitions. The tetragonal-to-monoclinic transformation
is first-order for x < 0.48 and causes a softening of the polycrystal Young's
modulus whose amplitude may exceed the one at the cubic-to-tetragonal
transformation; this is explainable in terms of linear coupling between shear
strain components and tilting angle of polarization in the monoclinic phase.
The transition involving rotations of the octahedra below 200 K is visible both
in the dielectric and anelastic losses, and it extends within the tetragonal
phase, as predicted by recent first-principle calculations.Comment: 4 pages, 4 figure
Emergent Chiral Symmetry: Parity and Time Reversal Doubles
There are numerous examples of approximately degenerate states of opposite
parity in molecular physics. Theory indicates that these doubles can occur in
molecules that are reflection-asymmetric. Such parity doubles occur in nuclear
physics as well, among nuclei with odd A 219-229. We have also suggested
elsewhere that such doubles occur in particle physics for baryons made up of
`cbu' and `cbd' quarks. In this article, we discuss the theoretical foundations
of these doubles in detail, demonstrating their emergence as a surprisingly
subtle consequence of the Born-Oppenheimer approximation, and emphasizing their
bundle-theoretic and topological underpinnings. Starting with certain ``low
energy'' effective theories in which classical symmetries like parity and time
reversal are anomalously broken on quantization, we show how these symmetries
can be restored by judicious inclusion of ``high-energy'' degrees of freedom.
This mechanism of restoring the symmetry naturally leads to the aforementioned
doublet structure. A novel by-product of this mechanism is the emergence of an
approximate symmetry (corresponding to the approximate degeneracy of the
doubles) at low energies which is not evident in the full Hamiltonian. We also
discuss the implications of this mechanism for Skyrmion physics, monopoles,
anomalies and quantum gravity.Comment: 32 pages, latex. minor changes in presentation and reference
Tortuous ways to the extraction of neutron observables from inclusive lepton scattering
We analyze new JLAB data for inclusive electron scattering on various
targets. Computed and measured total inclusive cross sections in the range
show on a logarithmic scale reasonable agreement
for all targets. However, closer inspection of the Quasi-Elastic components
bares serious discrepancies. EMC ratios which may contain less systematic
errors fare the same. The above observations for the new data do not enable the
extraction of the magnetic form factor (FF) and the Structure Function
(SFs) of the neutron, although the application of exactly the same
analysis to older data had been successful. We add to the above analysis older
CLAS collaboration on . Removing some scattered points, it appears
possible to obtain the above mentioned neutron information. We compare our
results with others from alternative sources. Particular attention is paid to
the A=3 iso-doublet. Present data exist only for He, but the available
input and charge symmetry also enable computations for H. Their average is
the computed iso-scalar part and is compared with the empirical modification of
He towards a fictitious A=3 iso-singlet.Comment: 27 pages, 30 figure
Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy?
Motivated by the large-scale asymmetry observed in the cosmic microwave
background sky, we consider a specific class of anisotropic cosmological models
-- Bianchi type VII_h -- and compare them to the WMAP first-year data on large
angular scales. Remarkably, we find evidence of a correlation which is ruled
out as a chance alignment at the 3sigma level. The best fit Bianchi model
corresponds to x=0.55, Omega_0=0.5, a rotation axis in the direction
(l,b)=(222degr,-62degr), shear (sigma/H)_0=2.4e-10 and a right--handed
vorticity (omega/H)_0=6.1e-10. Correcting for this component greatly reduces
the significance of the large-scale power asymmetry, resolves several anomalies
detected on large angular scales (ie. the low quadrupole amplitude and
quadrupole/octopole planarity and alignment), and can account for a
non--Gaussian "cold spot" on the sky. Despite the apparent inconsistency with
the best-fit parameters required in inflationary models to account for the
acoustic peaks, we consider the results sufficiently provocative to merit
further consideration.Comment: 4 pages, 3 figures; emulateapj.cls; ApJL accepted version plus fixed
error in vorticity calculation (sqrt(2) off in Table 1, abstract, and
conclusions); basic conclusions unchange
Quark Masses: An Environmental Impact Statement
We investigate worlds that lie on a slice through the parameter space of the
Standard Model over which quark masses vary. We allow as many as three quarks
to participate in nuclei, while fixing the mass of the electron and the average
mass of the lightest baryon flavor multiplet. We classify as "congenial" worlds
that satisfy the environmental constraint that the quark masses allow for
stable nuclei with charges one, six, and eight, making organic chemistry
possible. Whether a congenial world actually produces observers depends on a
multitude of historical contingencies, beginning with primordial
nucleosynthesis, which we do not explore. Such constraints may be independently
superimposed on our results. Environmental constraints such as the ones we
study may be combined with information about the a priori distribution of quark
masses over the landscape of possible universes to determine whether the
measured values of the quark masses are determined environmentally, but our
analysis is independent of such an anthropic approach.
We estimate baryon masses as functions of quark masses and nuclear masses as
functions of baryon masses. We check for the stability of nuclei against
fission, strong particle emission, and weak nucleon emission. For two light
quarks with charges 2/3 and -1/3, we find a band of congeniality roughly 29 MeV
wide in their mass difference. We also find another, less robust region of
congeniality with one light, charge -1/3 quark, and two heavier, approximately
degenerate charge -1/3 and 2/3 quarks. No other assignment of light quark
charges yields congenial worlds with two baryons participating in nuclei. We
identify and discuss the region in quark-mass space where nuclei would be made
from three or more baryon species.Comment: 40 pages, 16 figures (in color), 4 tables. See paper for a more
detailed abstract. v4: Cleaning up minor typo
Spectral triples and the super-Virasoro algebra
We construct infinite dimensional spectral triples associated with
representations of the super-Virasoro algebra. In particular the irreducible,
unitary positive energy representation of the Ramond algebra with central
charge c and minimal lowest weight h=c/24 is graded and gives rise to a net of
even theta-summable spectral triples with non-zero Fredholm index. The
irreducible unitary positive energy representations of the Neveu-Schwarz
algebra give rise to nets of even theta-summable generalised spectral triples
where there is no Dirac operator but only a superderivation.Comment: 27 pages; v2: a comment concerning the difficulty in defining cyclic
cocycles in the NS case have been adde
- …