169 research outputs found

    Assortative Mating in Genetic Algorithms for Dynamic Problems

    Full text link

    Myocardial injury in severe COVID-19 infection

    Get PDF
    No abstract available

    Regge Trajectories for Mesons in the Holographic Dual of Large-N_c QCD

    Full text link
    We discuss Regge trajectories of dynamical mesons in large-N_c QCD, using the supergravity background describing N_c D4-branes compactified on a thermal circle. The flavor degrees of freedom arise from the addition of N_f<<N_c D6 probe branes. Our work provides a string theoretical derivation, via the gauge/string correspondence, of a phenomenological model describing the meson as rotating point-like massive particles connected by a flux string. The massive endpoints induce nonlinearities for the Regge trajectory. For light quarks the Regge trajectories of mesons are essentially linear. For massive quarks our trajectories qualitatively capture the nonlinearity detected in lattice calculations.Comment: 21 pages, 4 figures. v2: typos corrected, references and acknowledgments adde

    Termination of the Phase of Quintessence by Gravitational Back-Reaction

    Get PDF
    We study the effects of gravitational back-reaction in models of Quintessence. The effective energy-momentum tensor with which cosmological fluctuations back-react on the background metric will in some cases lead to a termination of the phase of acceleration. The fluctuations we make use of are the perturbations in our present Universe. Their amplitude is normalized by recent measurements of anisotropies in the cosmic microwave background, their slope is taken to be either scale-invariant, or characterized by a slightly blue tilt. In the latter case, we find that the back-reaction effect of fluctuations whose present wavelength is smaller than the Hubble radius but which are stretched beyond the Hubble radius by the accelerated expansion during the era of Quintessence domination can become large. Since the back-reaction effects of these modes oppose the acceleration, back-reaction will lead to a truncation of the period of Quintessence domination. This result impacts on the recent discussions of the potential incompatibility between string theory and Quintessence.Comment: 7 pages a few clarifying comments adde

    Soft-core baryon-baryon potentials for the complete baryon octet

    Get PDF
    SU(3) symmetry relations on the recently constructed hyperon-nucleon potentials are used to develop potential models for all possible baryon-baryon interaction channels. The main focus is on the interaction channels with total strangeness S=-2, -3, and -4, for which no experimental data exist yet. The potential models for these channels are based on SU(3) extensions of potential models for the S=0 and S=-1 sectors, which are fitted to experimental data. Although the SU(3) symmetry is not taken to be exact, the S=0 and S=-1 sectors still provide the necessary constraints to fix all free parameters. The potentials for the S=-2, -3, and -4 sectors, therefore, do not contain any additional free parameters, which makes them the first models of this kind. Various properties of the potentials are illustrated by giving results for scattering lengths, bound states, and total cross sections.Comment: 22 pages RevTex, 6 postscript figure

    Preheating in Supersymmetric Theories

    Get PDF
    We examine the particle production via preheating at the end of inflation in supersymmetric theories. The inflaton and matter scalars are now necessarily complex fields, and their relevant interactions are restricted by holomorphy. In general this leads to major changes both in the inflaton dynamics and in the efficiency of the preheating process. In addition, supersymmetric models generically contain multiple isolated vacua, raising the possibility of non-thermal production of dangerous topological defects. Because of these effects, the success of leptogenesis or WIMPZILLA production via preheating depends much more sensitively on the detailed parameters in the inflaton sector than previously thought.Comment: 24 pages, 3 figures; references adde

    Non-vacuum Solutions of Bianchi Type VI_0 Universe in f(R) Gravity

    Full text link
    In this paper, we solve the field equations in metric f(R) gravity for Bianchi type VI_0 spacetime and discuss evolution of the expanding universe. We find two types of non-vacuum solutions by taking isotropic and anisotropic fluids as the source of matter and dark energy. The physical behavior of these solutions is analyzed and compared in the future evolution with the help of some physical and geometrical parameters. It is concluded that in the presence of isotropic fluid, the model has singularity at t~=0\tilde{t}=0 and represents continuously expanding shearing universe currently entering into phantom phase. In anisotropic fluid, the model has no initial singularity and exhibits the uniform accelerating expansion. However, the spacetime does not achieve isotropy as t→∞t\rightarrow\infty in both of these solutions.Comment: 20 pages, 5 figures, accepted for publication in Astrophys. Space Sc

    Primeval Corrections to the CMB Anisotropies

    Full text link
    We show that deviations of the quantum state of the inflaton from the thermal vacuum of inflation may leave an imprint in the CMB anisotropies. The quantum dynamics of the inflaton in such a state produces corrections to the inflationary fluctuations, which may be observable. Because these effects originate from IR physics below the Planck scale, they will dominate over any trans-Planckian imprints in any theory which obeys decoupling. Inflation sweeps away these initial deviations and forces its quantum state closer to the thermal vacuum. We view this as the quantum version of the cosmic no-hair theorem. Such imprints in the CMB may be a useful, independent test of the duration of inflation, or of significant features in the inflaton potential about 60 e-folds before inflation ended, instead of an unlikely discovery of the signatures of quantum gravity. The absence of any such substructure would suggest that inflation lasted uninterrupted much longer than O(100){\cal O}(100) e-folds.Comment: 17 pages, latex, no figures; v3: added references and comments, final version to appear in Phys. Rev.

    New hadrons as ultra-high energy cosmic rays

    Get PDF
    Ultra-high energy cosmic ray (UHECR) protons produced by uniformly distributed astrophysical sources contradict the energy spectrum measured by both the AGASA and HiRes experiments, assuming the small scale clustering of UHECR observed by AGASA is caused by point-like sources. In that case, the small number of sources leads to a sharp exponential cutoff at the energy E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve this cutoff problem. For the first time we discuss the production of such hadrons in proton collisions with infrared/optical photons in astrophysical sources. This production mechanism, in contrast to proton-proton collisions, requires the acceleration of protons only to energies E<10^{21} eV. The diffuse gamma-ray and neutrino fluxes in this model obey all existing experimental limits. We predict large UHE neutrino fluxes well above the sensitivity of the next generation of high-energy neutrino experiments. As an example we study hadrons containing a light bottom squark. These models can be tested by accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR

    Inclusive production of ρ0(770),f0(980)\rho^{0}(770), f_0(980) and f2(1270)f_2(1270) mesons in ΜΌ\nu_{\mu} charged current interactions

    Full text link
    The inclusive production of the meson resonances ρ0(770)\rho^{0}(770), f0(980)f_0(980) and f2(1270)f_2(1270) in neutrino-nucleus charged current interactions has been studied with the NOMAD detector exposed to the wide band neutrino beam generated by 450 GeV protons at the CERN SPS. For the first time the f0(980)f_{0}(980) meson is observed in neutrino interactions. The statistical significance of its observation is 6 standard deviations. The presence of f2(1270)f_{2}(1270) in neutrino interactions is reliably established. The average multiplicity of these three resonances is measured as a function of several kinematic variables. The experimental results are compared to the multiplicities obtained from a simulation based on the Lund model. In addition, the average multiplicity of ρ0(770)\rho^{0}(770) in antineutrino - nucleus interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
    • 

    corecore