35 research outputs found

    Persisting Mixed Cryoglobulinemia in Chikungunya Infection

    Get PDF
    Chikungunya virus is present in tropical Africa and Asia and is transmitted by mosquito bites. The disease is characterized by fever, headache, severe joint pain and transient skin rash for about a week. Most patients experience persisting joint pain and/or stiffness for months to years. In routine practice, diagnosis is based upon serology. Since 2004 there has been an ongoing giant outbreak of Chikungunya fever in East Africa, the Indian Ocean Islands, India and East Asia. In parallel, more than 1,000 travelers were diagnosed with imported Chikungunya infection in most developed countries. Considering the clinical features of our patients (joint pain), we hypothesized that cryoglobulins could be involved in the pathophysiology of the disease as observed in chronic hepatitis C infection. Cryoglobulins, which are immunoglobulins that precipitate when temperature is below 37°C, can induce rheumatic and vascular disorders. From April 2005 through May 2007, we screened all patients with possible imported Chikungunya infection for cryoglobulins. They were present in over 90% of patients, and possibly responsible for the unexpected false negativity of serological assays. Cryoglobulin frequency and levels decreased with time in recovering patients

    Chikungunya Virus Infection

    Get PDF
    Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitoes, mostly Aedes aegypti and Aedes albopictus. After half a century of focal outbreaks of acute febrile polyarthralgia in Africa and Asia, the disease unexpectedly spread in the past decade with large outbreaks in Africa and around the Indian Ocean and rare autochthonous transmission in temperate areas. This emergence brought new insights on its pathogenesis, notably the role of the A226V mutation that improved CHIKV fitness in Ae. albopictus and the possible CHIKV persistence in deep tissue sanctuaries for months after infection. Massive outbreaks also revealed new aspects of the acute stage: the high number of symptomatic cases, unexpected complications, mother-to-child transmission, and low lethality in debilitated patients. The follow-up of patients in epidemic areas has identified frequent, long-lasting, rheumatic disorders, including rare inflammatory joint destruction, and common chronic mood changes associated with quality-of-life impairment. Thus, the globalization of CHIKV exposes countries with Aedes mosquitoes both to brutal outbreaks of acute incapacitating episodes and endemic long-lasting disorders

    HLA Class I Restriction as a Possible Driving Force for Chikungunya Evolution

    Get PDF
    After two decades of quiescence, epidemic resurgence of Chikungunya fever (CHIKF) was reported in Africa, several islands in the Indian Ocean, South-East Asia and the Pacific causing unprecedented morbidity with some cases of fatality. Early phylogenetic analyses based on partial sequences of Chikungunya virus (CHIKV) have led to speculation that the virus behind recent epidemics may result in greater pathogenicity. To understand the reasons for these new epidemics, we first performed extensive analyses of existing CHIKV sequences from its introduction in 1952 to 2009. Our results revealed the existence of a continuous genotypic lineage, suggesting selective pressure is active in CHIKV evolution. We further showed that CHIKV is undergoing mild positive selection, and that site-specific mutations may be driven by cell-mediated immune pressure, with occasional changes that resulted in the loss of human leukocyte antigen (HLA) class I-restricting elements. These findings provide a basis to understand Chikungunya virus evolution and reveal the power of post-genomic analyses to understand CHIKV and other viral epidemiology. Such an approach is useful for studying the impact of host immunity on pathogen evolution, and may help identify appropriate antigens suitable for subunit vaccine formulations

    Proteomic Analysis of Chikungunya Virus Infected Microgial Cells

    Get PDF
    Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms

    Recombinant Modified Vaccinia Virus Ankara Expressing Glycoprotein E2 of Chikungunya Virus Protects AG129 Mice against Lethal Challenge

    Get PDF
    Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections

    Sporadic cases of chikungunya, Réunion Island, August 2009.

    No full text
    International audienceOn 28 August 2009, French authorities reported five cases of chikungunya fever on Reunion Island: three confirmed, one probable, and one suspected case under investigation. All three confirmed patients presented with an acute febrile syndrome, arthralgia, myalgia and cutaneaous rash. All live in the same area on the western side of the island
    corecore