31 research outputs found

    Kinetic nanofriction: a mechanism transition from quasi-continuous to ballistic-like Brownian regime

    Get PDF
    Surface diffusion of mobile adsorbates is not only the key to control the rate of dynamical processes on solid surfaces, e.g. epitaxial growth, but also of fundamental importance for recent technological applications, such as nanoscale electro-mechanical, tribological, and surface probing devices. Though several possible regimes of surface diffusion have been suggested, the nanoscale surface Brownian motion, especially in the technologically important low friction regimes, remains largely unexplored. Using molecular dynamics simulations, we show for the first time, that a C60 admolecule on a graphene substrate exhibits two distinct regimes of nanoscale Brownian motion: a quasi-continuous and a ballistic-like. A crossover between these two regimes is realized by changing the temperature of the system. We reveal that the underlying physical origin for this crossover is a mechanism transition of kinetic nanofriction arising from distinctive ways of interaction between the admolecule and the graphene substrate in these two regimes due to the temperature change. Our findings provide insight into surface mass transport and kinetic friction control at the nanoscale

    Size Effect Suppresses Brittle Failure in Hollow Cu_(60)Zr_(40) Metallic Glass Nanolattices Deformed at Cryogenic Temperatures

    Get PDF
    To harness “smaller is more ductile” behavior emergent at nanoscale and to proliferate it onto materials with macroscale dimensions, we produced hollow-tube Cu_(60)Zr_(40) metallic glass nanolattices with the layer thicknesses of 120, 60, and 20 nm. They exhibit unique transitions in deformation mode with tube-wall thickness and temperature. Molecular dynamics simulations and analytical models were used to interpret these unique transitions in terms of size effects on the plasticity of metallic glasses and elastic instability

    Mechanisms of Failure in Nanoscale Metallic Glass

    Get PDF
    The emergence of size-dependent mechanical strength in nanosized materials is now well-established, but no fundamental understanding of fracture toughness or flaw sensitivity in nanostructures exists. We report the fabrication and in situ fracture testing of ∼70 nm diameter Ni–P metallic glass samples with a structural flaw. Failure occurs at the structural flaw in all cases, and the failure strength of flawed samples was reduced by 40% compared to unflawed samples. We explore deformation and failure mechanisms in a similar nanometallic glass via molecular dynamics simulations, which corroborate sensitivity to flaws and reveal that the structural flaw shifts the failure mechanism from shear banding to cavitation. We find that failure strength and deformation in amorphous nanosolids depend critically on the presence of flaws

    Molecular mobility on graphene nanoroads

    No full text
    10.1038/srep12848Scientific Reports51284

    Chemical affinity can govern notch-tip brittle-to-ductile transition in metallic glasses

    No full text
    Chemical short-range order (CSRO) has emerged as an important index of material properties for multicomponent metallic alloys and glasses, but its role in transition between brittle and ductile fracture mechanisms is not understood. Here, using molecular dynamics simulations of fracture in notched samples of a nominally brittle metallic glass Fe80P20, we show that the fracture mode can be altered from crack propagation to shear banding by tuning CSRO. The underlying mechanism is identified as the agglomeration of metalloid (P) atoms as heterogeneous brittle zones with the formation of CSRO, leading to brittle fracture. By reducing the extent of CSRO, shear banding at the notch tip becomes the dominant failure mechanism. (c) 2022 Elsevier Ltd. All rights reserved.Peer reviewe

    A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications

    No full text
    Functional and mechanical properties of novel biomaterials must be carefully evaluated to guarantee long-term biocompatibility and structural integrity of implantable medical devices. Owing to the combination of metallic bonding and amorphous structure, metallic glasses (MGs) exhibit extraordinary properties superior to conventional crystalline metallic alloys, placing them at the frontier of biomaterials research. MGs have potential to improve corrosion resistance, biocompatibility, strength, and longevity of biomedical implants, and hence are promising materials for cardiovascular stent applications. Nevertheless, while functional properties and biocompatibility of MGs have been widely investigated and validated, a solid understanding of their mechanical performance during different stages in stent applications is still scarce. In this review, we provide a brief, yet comprehensive account on the general aspects of MGs regarding their formation, processing, structure, mechanical, and chemical properties. More specifically, we focus on the additive manufacturing (AM) of MGs, their outstanding high strength and resilience, and their fatigue properties. The interconnection between processing, structure and mechanical behaviour of MGs is highlighted. We further review the main categories of cardiovascular stents, the required mechanical properties of each category, and the conventional materials have been using to address these requirements. Then, we bridge between the mechanical requirements of stents, structural properties of MGs, and the corresponding stent design caveats. In particular, we discuss our recent findings on the feasibility of using MGs in self-expandable stents where our results show that a metallic glass based aortic stent can be crimped without mechanical failure. We further justify the safe deployment of this stent in human descending aorta. It is our intent with this review to inspire biodevice developers toward the realization of MG-based stents
    corecore