20 research outputs found

    Additional file 1: Table S1. of The impact of sitting time and physical activity on major depressive disorder in South Korean adults: a cross-sectional study

    No full text
    Men and women participants’ general characteristics. * Number of chronic diseases: Hypertension, dyslipidemia, stroke, myocardial infarction, angina, arthritis, rheumatoid arthritis, asthma, thyroid gland disorder, chronic renal failure, hepatitis B. * Number of chronic diseases: Hypertension, dyslipidemia, stroke, myocardial infarction, angina, arthritis, rheumatoid arthritis, asthma, thyroid gland disorder, chronic renal failure, hepatitis B. Table S2. Subgroup analysis of sitting-time and major depressive disorder according to physical activity. Adjusted for age, household income level, educational level, marital status, occupation, obesity, current smoking status, alcohol use and number of chronic diseases. (DOCX 51 kb

    An NO Donor Approach to Neuroprotective and Procognitive Estrogen Therapy Overcomes Loss of NO Synthase Function and Potentially Thrombotic Risk

    Get PDF
    <div><p>Selective estrogen receptor modulators (SERMs) are effective therapeutics that preserve favorable actions of estrogens on bone and act as antiestrogens in breast tissue, decreasing the risk of vertebral fractures and breast cancer, but their potential in neuroprotective and procognitive therapy is limited by: 1) an increased lifetime risk of thrombotic events; and 2) an attenuated response to estrogens with age, sometimes linked to endothelial nitric oxide synthase (eNOS) dysfunction. Herein, three 3<sup>rd</sup> generation SERMs with similar high affinity for estrogen receptors (ERα, ERβ) were studied: desmethylarzoxifene (DMA), FDMA, and a novel NO-donating SERM (NO-DMA). Neuroprotection was studied in primary rat neurons exposed to oxygen glucose deprivation; reversal of cholinergic cognitive deficit was studied in mice in a behavioral model of memory; long term potentiation (LTP), underlying cognition, was measured in hippocampal slices from older 3×Tg Alzheimer's transgenic mice; vasodilation was measured in rat aortic strips; and anticoagulant activity was compared. Pharmacologic blockade of GPR30 and NOS; denudation of endothelium; measurement of NO; and genetic knockout of eNOS were used to probe mechanism. Comparison of the three chemical probes indicates key roles for GPR30 and eNOS in mediating therapeutic activity. Procognitive, vasodilator and anticoagulant activities of DMA were found to be eNOS dependent, while neuroprotection and restoration of LTP were both shown to be dependent upon GPR30, a G-protein coupled receptor mediating estrogenic function. Finally, the observation that an NO-SERM shows enhanced vasodilation and anticoagulant activity, while retaining the positive attributes of SERMs even in the presence of NOS dysfunction, indicates a potential therapeutic approach without the increased risk of thrombotic events.</p></div

    Relaxation of isolated aortic rings by SERMs and NO-SERM.

    No full text
    <p>(<b>A</b>) The EC<sub>50</sub> values for relaxation were not significantly different for raloxifene, arzoxifene, DMA, and FDMA (p>0.05, one-way ANOVA and Newman-Keul's post-hoc test), whereas for NO-DMA potency was significantly different from all other SERMs (F<sub>(4,43)</sub> = 4.085, p<0.01). The maximal relaxation responses for arzoxifene and FDMA were significantly less than those for DMA and raloxifene (F<sub>(3, 37)</sub> = 11.77 p<0.05, one-way ANOVA and Newman-Keul's post-hoc test). Each value represents the mean ± S.E.M. (n = 7–13). (<b>B</b>) Removal of the endothelium or inhibition of NOS with L-NAME reduced the maximal relaxation response to DMA (F<sub>(2, 18)</sub> = 28.22, p<0.001, one-way ANOVA and Newman-Keuls post-hoc test). Each value represents the mean ± S.E.M. (n = 7). (<b>C</b>) The EC<sub>50</sub> values for relaxation were significantly increased in the presence of L-NAME or after endothelium removal (F<sub>(2,18)</sub> = 7.753, p<0.05, one-way ANOVA and Newman-Keuls post-hoc test). Each value represents the mean ± S.E.M. (n = 7).</p

    Raloxifene and Desmethylarzoxifene Block Estrogen- Induced Malignant Transformation of Human Breast Epithelial Cells

    Get PDF
    There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant transformation was studied in MCF-10A human mammary epithelial cells, since estrogens are not proliferative in this cell line. The human and equine estrogen components of estrogen replacement therapy (ERT) and their catechol metabolites were studied, along with the influence of co-administration of selective estrogen receptor modulators (SERMs), raloxifene and desmethyl-arzoxifene (DMA), and histone deacetylase inhibitors. Transformation was induced by human estrogens, and selectively by the 4-OH catechol metabolite, and to a lesser extent by an equine estrogen metabolite. The observed estrogen-induced upregulation of CYP450 1B1 in estrogen receptor negative MCF-10A cells, was compatible with a causal role for 4-OH catechol estrogens, as was attenuated transformation by CYP450 inhibitors. Estrogen-induced malignant transformation was blocked by SERMs correlating with a reduction in formation of nucleobase catechol estrogen (NCE) adducts and formation of 8-oxo-dG. NCE adducts can be formed consequent to DNA abasic site formation, but NCE adducts were also observed on incubation of estrogen quinones with free nucleotides. These results suggest that NCE adducts may be a biomarker for cellular electrophilic stress, which together with 8-oxo-dG as a biomarker of oxidative stress correlate with malignant transformation induced by estrogen oxidative metabolites. The observed attenuation of transformation by SERMs correlated with these biomarkers and may also be of clinical significance in breast cancer chemoprevention

    SERM reversal of memory deficits in WT mice is retained by NO-DMA in eNOS (−/−) mice.

    No full text
    <p>Amnestic memory deficit was induced by i.p. injection of either scopolamine (1 mg/kg) or L-NAME (50 mg/kg) 30 min prior to training in C57Bl/6 male mice. SERMs (2 mg/kg) were given 20 min prior to training and latency was assessed 24 h after training with animals being removed from the task if latency >300 s. All SERMs, except F-DMA, restored scopolamine-induced deficits in STPA in C57Bl/6 animals. Against L-NAME-induced deficit, only NO-DMA showed efficacy in reversing memory deficits. In eNOS (−/−) animals subject to scopolamine-induced amnesia, only NO-DMA showed efficacy. Data show mean and S.E.M. (n = 4–10); *** = p<0.001 compared to non-insult wild type vehicle control using one-way ANOVA with Dunnett's post hoc test; F<sub>(14,124)</sub> = 29.26, p<0.0001.</p

    Effects of SERM and NO-SERMon NO levels in plasma and brain of WT and eNOS (−/−) mice.

    No full text
    <p>Levels of NO were assessed by measuring breakdown products 1 h after i.p. injection of SERMs (2 mg/kg) using chemiluminescence detection. Both DMA and NO-DMA increased levels of NO in WT mice. The diminished response in eNOS (−/−) was significantly attenuated in DMA relative to NO-DMA treated animals. Data show mean and S.E.M. (n = 4–12); * = p<0.05, ** = p<0.01, *** = p<0.001 compared to wild type vehicle control using one-way ANOVA with Dunnett's post hoc test within each group: hippocampus F<sub>(4,40)</sub> = 7.79, p<0.0001; plasma F<sub>(4, 23)</sub> = 21.76, p<0.0001.</p

    Reversal of LTP deficit in aged 3×Tg mice by SERMs is GPR30 dependent.

    No full text
    <p>LTP was measured after TBS in the CA1 region of hippocampal sections from 16 month male 3×Tg mice or WT controls. Test compounds (SERMs 100 nM; G15 100 nM) were added 30 min prior to TBS. (<b>A, B</b>) DMA and NO-DMA restored deficits in LTP to WT levels and G15 blocked the actions of DMA. (<b>C</b>) Secondary analysis of theta bursts indicate action both during induction and stabilization of LTP, through a GPR30 dependent mechanism. Data show mean and S.E.M. normalized to baseline (n = 4–9); for end fEPSP: * = p<0.05, ** = p<0.01 compared to wild type transgenic background controls using one-way ANOVA with Dunnett's post hoc test; F<sub>(4,32)</sub> = 8.21, p = 0.0001.</p

    SERM-elicited neuroprotection in primary cortical neurons exposed to OGD is GPR30 dependent and retained by NO-DMA.

    No full text
    <p>Primary neuronal cultures were subjected to 2 h OGD with compounds added at the start of OGD and inhibitors added 45 min prior to OGD. Cell survival was measured at 24 h. Use of pathway-selective inhibitors indicates that neuroprotection of DMA and NO-DMA is mediated through PI3K-dependent GPR30 signaling in an ER- and NOS-independent manner. Data show mean and S.E.M. normalized to veh. control and estradiol (n = 6); * = p<0.05, ** = p<0.01, *** = p<0.001 compared to untreated vehicle control using one-way ANOVA with Dunnett's post hoc test within each treatment group; no blocker F<sub>(4,67)</sub> = 169.5, p<0.0001; ICI 182780 F<sub>(4,61)</sub> = 58.65, p<0.0001; pertussis F<sub>(4,61)</sub> = 6.78, p = 0.0001; G15 F<sub>(4,61)</sub> = 0.63, p = 0.64; LY294002 F<sub>(4,61)</sub> = 6.29, p<0.001; L-NAME F<sub>(4,61)</sub> = 89.33, p<0.0001.</p

    4‑Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone is a Biologically Active Precursor for the Generation of 2‑(ω-Carboxyethyl)pyrrole (CEP) Derivatives of Proteins and Ethanolamine Phospholipids

    No full text
    2-(ω-Carboxyethyl)­pyrrole (CEP) derivatives of proteins were previously shown to have significant pathological and physiological relevance to age-related macular degeneration, cancer and wound healing. Previously, we showed that CEPs are generated in the reaction of ε-amino groups of protein lysyl residues with 1-palmityl-2-(4-hydroxy-7-oxo-5-heptenoyl)-<i>sn</i>-glycero-3-phosphatidylcholine (HOHA-PC), a lipid oxidation product uniquely generated by oxidative truncation of docosahexanenate-containing phosphatidylcholine. More recently, we found that HOHA-PC rapidly releases HOHA-lactone and 2-lyso-PC (<i>t</i><sub>1/2</sub> = 30 min at 37 °C) by nonenzymatic transesterification/deacylation. Now we report that HOHA-lactone reacts with Ac-Gly-Lys-OMe or human serum albumin to form CEP derivatives in vitro. Incubation of human red blood cell ghosts with HOHA-lactone generates CEP derivatives of membrane proteins and ethanolamine phospholipids. Quantitative analysis of the products generated in the reaction HOHA-PC with Ac-Gly-Lys-OMe showed that HOHA-PC mainly forms CEP-dipeptide that is not esterified to 2-lysophosphatidycholine. Thus, the HOHA-lactone pathway predominates over the direct reaction of HOHA-PC to produce the CEP-PC-dipeptide derivative. Myleoperoxidase/H<sub>2</sub>O<sub>2</sub>/NO<sub>2</sub><sup>–</sup> promoted in vitro oxidation of either 1-palmityl-2-docosahexaneoyl-<i>sn</i>-glycero-3-phosphatidylcholine (DHA-PC) or docosahexaenoic acid (DHA) generates HOHA-lactone in yields of 0.45% and 0.78%, respectively. Lipid oxidation in human red blood cell ghosts also releases HOHA-lactone. Oxidative injury of ARPE-19 human retinal pigmented epithelial cells by exposure to H<sub>2</sub>O<sub>2</sub> generated CEP derivatives. Treatment of ARPE-19 cells with HOHA-lactone generated CEP-modified proteins. Low (submicromolar), but not high, concentrations of HOHA-lactone promote increased vascular endothelial growth factor (VEGF) secretion by ARPE-19 cells. Therefore, HOHA-lactone not only serves as an intermediate for the generation of CEPs but also is a biologically active oxidative truncation product from docosahexaenoate lipids

    Image2_ApoE isoform-dependent effects of xanthohumol on high fat diet-induced cognitive impairments and hippocampal metabolic pathways.JPEG

    No full text
    Consumption of a high fat diet (HFD) is linked to metabolic syndrome and cognitive impairments. This is exacerbated in age-related cognitive decline (ACD) and in individuals with a genetic risk for Alzheimer’s disease (AD). Apolipoprotein E (apoE) is involved in cholesterol metabolism. In humans, there are three major isoforms, E2, E3, and E4. Compared to E3, E4 increases ACD and AD risk and vulnerability to the deleterious cognitive effects of a HFD. The plant compound Xanthohumol (XN) had beneficial effects on cognition and metabolism in C57BL/6J wild-type (WT) male mice put on a HFD at 9 weeks of age for 13 weeks. As the effects of XN in the context of a HFD in older WT, E3, and E4 female and male mice are not known, in the current study male and female WT, E3, and E4 mice were fed a HFD alone or a HFD containing 0.07% XN for 10 or 19 weeks, starting at 6 months of age, prior to the beginning of behavioral and cognitive testing. XN showed sex- and ApoE isoform-dependent effects on cognitive performance. XN-treated E4 and WT, but not E3, mice had higher glucose transporter protein levels in the hippocampus and cortex than HFD-treated mice. E3 and E4 mice had higher glucose transporter protein levels in the hippocampus and lower glucose transporter protein levels in the cortex than WT mice. In the standard experiment, regardless of XN treatment, E4 mice had nearly double as high ceramide and sphingomyelin levels than E3 mice and male mice had higher level of glycosylated ceramide than female mice. When the differential effects of HFD in E3 and E4 males were assessed, the arginine and proline metabolism pathway was affected. In the extended exposure experiment, in E3 males XN treatment affected the arginine and proline metabolism and the glycine, serine, and threonine metabolism. Myristic acid levels were decreased in XN-treated E3 males but not E3 females. These data support the therapeutic potential for XN to ameliorate HFD-induced cognitive impairments and highlight the importance of considering sex and ApoE isoform in determining who might most benefit from this dietary supplement.</p
    corecore