5 research outputs found

    Wheat Grain Yield and Grain Protein Concentration Response to Nitrogen Rate During the 2018–2019 Growing Season in Kansas

    Get PDF
    The objective of this project was to evaluate winter wheat grain yield and grain protein concentration responses to nitrogen (N) rate in the state of Kansas during the 2018–2019 growing season. Experiments evaluating the response of the wheat variety Zenda to four nitrogen rates (0, 50, 100, and 150 lb N/a) were established at four locations. In-season measurements included flag leaf N concentration, grain yield, yield components, and grain protein concentration. Flag leaf N concentration ranged from 2.4 to 4.1% across all environments and treatments, and increases in N rates increased flag leaf N concentration linearly. Grain yield ranged from 36.3 to 94.4 bu/a and increased with increases in N rate usually following quadratic relationships at all locations except for Belleville, where no response was observed, likely due to the high organic matter levels. Grain protein concentration ranged from 11 to 15% across all locations and treatments and increases in N rates increased grain protein concentration following a usually linear relationship; however, the quadratic yield response to N rate, coupled to the linear protein response to N rate, indicated that greater N rates might be needed to maximize protein as compared to maximizing yields. Both relative grain yield and relative grain protein concentration variables calculated relative to the maximum in each respective environment, were related to flag leaf N concentration in a linear-plateau way, suggesting that flag leaf N concentration could be used as a diagnostic tool for crop N status

    Wheat Grain Yield and Protein Concentration Response to Nitrogen and Sulfur Rates

    Get PDF
    Winter wheat is often double-cropped after soybeans in no-tillage systems. The soybean crop removes large quantities of sulfur (S), which might cause S deficiency for the following wheat crop. Our objective was to evaluate the responses of three wheat varieties to three nitrogen (N) and four S fertilizer rates representing a range of N:S ratios. The experiment was conducted near Ashland Bottoms and Hutchinson, KS. Treatments were arranged as a complete factorial structure with a split-split-plot design. Variety was the whole-plot, N was the sub-plot, and S was the sub-sub plot. Nitrogen rates were 50, 100, and 150% of the university recommendations for a 60 bushel per acre yield, and S rates were 0, 10, 20, and 40 pounds of S per acre. Wheat varieties evaluated were Zenda, SY Monument, and LCS Mint. Increasing the N rate increased grain yield at both locations. Sulfur increased grain yield at Ashland Bottoms but not at Hutchinson. Nitrogen by S interaction occurred for protein concentration at both locations. At Hutchinson, N rates of 50, 100, and 150% N resulted in grain yield of 62, 73, and 78 bu/a. For the 50% and 100% N rate, protein concentration was 10.8% and 11.3%; however, the 150% N rate with 20 or 40 lb S/a increased protein concentration to 11.8% as compared to 11.5% observed in the 0 or 10 lb S/a treatments. At Ashland Bottoms, N rates of 50, 100, and 150% resulted in grain yield of 56, 69, and 74 bu/a across S treatments. For the 0 pounds of S per acre treatment, though, these N rates resulted in grain yields of 36, 42, and 40 bu/a. The 150% N rate with 20 and 40 lb S/a increased grain yield by 5 bu/a as compared to the 10 lb S/a treatment. At the 50% N rate, protein concentration was 9.7% with an application of S as compared to 10.3% for the 0 lb S/a, which is due to a dilution effect from the increased grain yield. As S application increased, protein concentration decreased at the 100% N rate. However, at the 150% N rate, protein concentrations were 12.2, 11.5, 11.8, and 11.9% for the 0, 10, 20, and 40 lb S/a, respectively. Our results suggest that a balanced fertilization of N and S are essential for improving yield and protein concentration in no-till systems following soybeans, and that initial S in the profile and soil organic matter (OM) play a crucial role in determining the crop’s response to the added fertilizers

    Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies

    Get PDF
    Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m-2 for the low YE to 191 pl m-2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP.Fil: Bastos, Leonardo M.. Kansas State University; Estados UnidosFil: Carciochi, Walter Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata; Argentina. Kansas State University; Estados UnidosFil: Lollato, Romulo P.. Kansas State University; Estados UnidosFil: Jaenisch, Brent R.. Kansas State University; Estados UnidosFil: Rezende, Caio R.. Kansas State University; Estados UnidosFil: Schwalbert, Rai. Kansas State University; Estados UnidosFil: Vara Prasad, P.V.. Kansas State University; Estados UnidosFil: Zhang, Guorong. Kansas State University; Estados UnidosFil: Fritz, Allan K.. Kansas State University; Estados UnidosFil: Foster, Chris. John Deer; Estados UnidosFil: Wright, Yancy. John Deer; Estados UnidosFil: Young, Steven. John Deer; Estados UnidosFil: Bradley, Pauley. John Deer; Estados UnidosFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unido

    Brain Networks, Hormones and Genes Implicated in Depression

    No full text
    corecore