4 research outputs found

    Modelling of riverine ecosystems by integrating models: conceptual approach, a case study and research agenda

    Get PDF
    Aim Highly complex interactions between the hydrosphere and biosphere, as well as multifactorial relationships, characterize the interconnecting role of streams and rivers between different elements of a landscape. Applying species distribution models (SDMs) in these ecosystems requires special attention because rivers are linear systems and their abiotic and biotic conditions are structured in a linear fashion with significant influences from upstream/downstream or lateral influences from adjacent areas. Our aim was to develop a modelling framework for benthic invertebrates in riverine ecosystems and to test our approach in a data-rich study catchment. Location We present a case study of a 9-km section of the lowland Kielstau River located in northern Germany. Methods We linked hydrological, hydraulic and species distribution models to predict the habitat suitability for the bivalve Sphaerium corneum in a riverine system. The results generated by the hydrological model served as inputs into the hydraulic model, which was used to simulate the resulting water levels, velocities and sediment discharge within the stream channel. Results The ensemble model obtained good evaluation scores (area under the receiver operating characteristic curve 0.96; kappa 0.86; true skill statistic 0.95; sensitivity 86.14; specificity 85.75). Mean values for variables at the sampling sites were not significantly different from the values at the predicted distribution (MannWhitney U-test P > 0.05). High occurrence probabilities were predicted in the downstream half of the 9-km section of the Kielstau. The most important variable for the model was sediment discharge (contributing 40%), followed by water depth (30%), flow velocity (19%) and stream power (11%). Main conclusions The hydrological and hydraulic models are able to produce predictors, acting at different spatial scales, which are known to influence riverine organisms; which, in turn, are used by the SDMs as input. Our case study yielded good results, which corresponded well with ecological knowledge about our study organism. Although this method is feasible for making projections of habitat suitability on a local scale (here: a reach in a small catchment), we discuss remaining challenges for future modelling approaches and large-scale applications.Aim Highly complex interactions between the hydrosphere and biosphere, as well as multifactorial relationships, characterize the interconnecting role of streams and rivers between different elements of a landscape. Applying species distribution models (SDMs) in these ecosystems requires special attention because rivers are linear systems and their abiotic and biotic conditions are structured in a linear fashion with significant influences from upstream/downstream or lateral influences from adjacent areas. Our aim was to develop a modelling framework for benthic invertebrates in riverine ecosystems and to test our approach in a data-rich study catchment. Location We present a case study of a 9-km section of the lowland Kielstau River located in northern Germany. Methods We linked hydrological, hydraulic and species distribution models to predict the habitat suitability for the bivalve Sphaerium corneum in a riverine system. The results generated by the hydrological model served as inputs into the hydraulic model, which was used to simulate the resulting water levels, velocities and sediment discharge within the stream channel. Results The ensemble model obtained good evaluation scores (area under the receiver operating characteristic curve 0.96; kappa 0.86; true skill statistic 0.95; sensitivity 86.14; specificity 85.75). Mean values for variables at the sampling sites were not significantly different from the values at the predicted distribution (MannWhitney U-test P > 0.05). High occurrence probabilities were predicted in the downstream half of the 9-km section of the Kielstau. The most important variable for the model was sediment discharge (contributing 40%), followed by water depth (30%), flow velocity (19%) and stream power (11%). Main conclusions The hydrological and hydraulic models are able to produce predictors, acting at different spatial scales, which are known to influence riverine organisms; which, in turn, are used by the SDMs as input. Our case study yielded good results, which corresponded well with ecological knowledge about our study organism. Although this method is feasible for making projections of habitat suitability on a local scale (here: a reach in a small catchment), we discuss remaining challenges for future modelling approaches and large-scale applications

    SMART Research: Toward Interdisciplinary River Science in Europe

    Get PDF
    Interdisciplinary science is rapidly advancing to address complex human-environment interactions. River science aims to provide the methods and knowledge required to sustainably manage some of the planet’s most important and vulnerable ecosystems; and there is a clear need for river managers and scientists to be trained within an interdisciplinary approach. However, despite the science community’s recognition of the importance of interdisciplinary training, there are few studies examining interdisciplinary graduate programs, especially in science and engineering. Here we assess and reflect on the contribution of a 9-year European doctoral program in river science: ‘Science for MAnagement of Rivers and their Tidal Systems’ Erasmus Mundus Joint Doctorate (SMART EMJD). The program trained a new generation of 36 early career scientists under the supervision of 34 international experts from different disciplinary and interdisciplinary research fields focusing on river systems, aiming to transcend the boundaries between disciplines and between science and management. We analyzed the three core facets of the SMART program, namely: (1) interdisciplinarity, (2) internationalism, and (3) management-oriented science. We reviewed the contents of doctoral theses and publications and synthesized the outcomes of two questionnaire surveys conducted with doctoral candidates and supervisors. A high percentage of the scientific outputs (80%) were interdisciplinary. There was evidence of active collaboration between different teams of doctoral candidates and supervisors, in terms of joint publications (5 papers out of the 69 analyzed) but this was understandably quite limited given the other demands of the program. We found evidence to contradict the perception that interdisciplinarity is a barrier to career success as employment rates were high (97%) and achieved very soon after the defense, both in academia (50%) and the private/public sector (50%) with a strong international dimension. Despite management-oriented research being a limited (9%) portion of the ensemble of theses, employment in management was higher (22%). The SMART program also increased the network of international collaborations for doctoral candidates and supervisors. Reflections on doctoral training programs like SMART contribute to debates around research training and the career opportunities of interdisciplinary scientists
    corecore