10,220 research outputs found
Disentanglement and decoherence in two-spin and three-spin systems under dephasing
We compare disentanglement and decoherence rates within two-spin and
three-spin entangled systems subjected to all possible combinations of local
and collective pure dephasing noise combinations. In all cases, the bipartite
entanglement decay rate is found to be greater than or equal to the
dephasing-decoherence rates and often significantly greater. This sharpens
previous results for two-spin systems [T. Yu and J. H. Eberly Phys. Rev. B 68,
165322 (2003)] and extends them to the three-spin context.Comment: 17 page
Intruders in the Dust: Air-Driven Granular Size Separation
Using MRI and high-speed video we investigate the motion of a large intruder
particle inside a vertically shaken bed of smaller particles. We find a
pronounced, non-monotonic density dependence, with both light and heavy
intruders moving faster than those whose density is approximately that of the
granular bed. For light intruders, we furthermore observe either rising or
sinking behavior, depending on intruder starting height, boundary condition and
interstitial gas pressure. We map out the phase boundary delineating the rising
and sinking regimes. A simple model can account for much of the observed
behavior and show how the two regimes are connected by considering pressure
gradients across the granular bed during a shaking cycle.Comment: 5 pages, 4 figure
Thermal convection in mono-disperse and bi-disperse granular gases: A simulation study
We present results of a simulation study of inelastic hard-disks vibrated in
a vertical container. An Event-Driven Molecular Dynamics method is developed
for studying the onset of convection. Varying the relevant parameters
(inelasticity, number of layers at rest, intensity of the gravity) we are able
to obtain a qualitative agreement of our results with recent hydrodynamical
predictions. Increasing the inelasticity, a first continuous transition from
the absence of convection to one convective roll is observed, followed by a
discontinuous transition to two convective rolls, with hysteretic behavior. At
fixed inelasticity and increasing gravity, a transition from no convection to
one roll can be evidenced. If the gravity is further increased, the roll is
eventually suppressed. Increasing the number of monolayers the system
eventually localizes mostly at the bottom of the box: in this case multiple
convective rolls as well as surface waves appear. We analyze the density and
temperature fields and study the existence of symmetry breaking in these fields
in the direction perpendicular to the injection of energy. We also study a
binary mixture of grains with different properties (inelasticity or diameters).
The effect of changing the properties of one of the components is analyzed,
together with density, temperature and temperature ratio fields.
Finally, the presence of a low-fraction of quasi-elastic impurities is shown
to determine a sharp transition between convective and non-convective steady
states.Comment: 11 pages, 12 figures, accepted for publication on Physical Review
Volume fluctuations and geometrical constraints in granular packs
Structural organization and correlations are studied in very large packings
of equally sized acrylic spheres, reconstructed in three-dimensions by means of
X-ray computed tomography. A novel technique, devised to analyze correlations
among more than two spheres, shows that the structural organization can be
conveniently studied in terms of a space-filling packing of irregular
tetrahedra. The study of the volume distribution of such tetrahedra reveals an
exponential decay in the region of large volumes; a behavior that is in very
good quantitative agreement with theoretical prediction. I argue that the
system's structure can be described as constituted of two phases: 1) an
`unconstrained' phase which freely shares the volume; 2) a `constrained' phase
which assumes configurations accordingly with the geometrical constraints
imposed by the condition of non-overlapping between spheres and mechanical
stability. The granular system exploits heterogeneity maximizing freedom and
entropy while constraining mechanical stability.Comment: 5 pages, 4 figure
A Model for Force Fluctuations in Bead Packs
We study theoretically the complex network of forces that is responsible for
the static structure and properties of granular materials. We present detailed
calculations for a model in which the fluctuations in the force distribution
arise because of variations in the contact angles and the constraints imposed
by the force balance on each bead of the pile. We compare our results for force
distribution function for this model, including exact results for certain
contact angle probability distributions, with numerical simulations of force
distributions in random sphere packings. This model reproduces many aspects of
the force distribution observed both in experiment and in numerical simulations
of sphere packings
Hierarchical Temporal Representation in Linear Reservoir Computing
Recently, studies on deep Reservoir Computing (RC) highlighted the role of
layering in deep recurrent neural networks (RNNs). In this paper, the use of
linear recurrent units allows us to bring more evidence on the intrinsic
hierarchical temporal representation in deep RNNs through frequency analysis
applied to the state signals. The potentiality of our approach is assessed on
the class of Multiple Superimposed Oscillator tasks. Furthermore, our
investigation provides useful insights to open a discussion on the main aspects
that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian
Workshop on Neural Networks, WIRN 201
Unexpected cell type-dependent effects of autophagy on polyglutamine aggregation revealed by natural genetic variation in C. elegans.
BACKGROUND: Monogenic protein aggregation diseases, in addition to cell selectivity, exhibit clinical variation in the age of onset and progression, driven in part by inter-individual genetic variation. While natural genetic variants may pinpoint plastic networks amenable to intervention, the mechanisms by which they impact individual susceptibility to proteotoxicity are still largely unknown.
RESULTS: We have previously shown that natural variation modifies polyglutamine (polyQ) aggregation phenotypes in C. elegans muscle cells. Here, we find that a genomic locus from C. elegans wild isolate DR1350 causes two genetically separable aggregation phenotypes, without changing the basal activity of muscle proteostasis pathways known to affect polyQ aggregation. We find that the increased aggregation phenotype was due to regulatory variants in the gene encoding a conserved autophagy protein ATG-5. The atg-5 gene itself conferred dosage-dependent enhancement of aggregation, with the DR1350-derived allele behaving as hypermorph. Surprisingly, increased aggregation in animals carrying the modifier locus was accompanied by enhanced autophagy activation in response to activating treatment. Because autophagy is expected to clear, not increase, protein aggregates, we activated autophagy in three different polyQ models and found a striking tissue-dependent effect: activation of autophagy decreased polyQ aggregation in neurons and intestine, but increased it in the muscle cells.
CONCLUSIONS: Our data show that cryptic natural variants in genes encoding proteostasis components, although not causing detectable phenotypes in wild-type individuals, can have profound effects on aggregation-prone proteins. Clinical applications of autophagy activators for aggregation diseases may need to consider the unexpected divergent effects of autophagy in different cell types
Spontaneous spinal epidural haematoma during Factor Xa inhibitor treatment (Rivaroxaban)
We report on a 61-year-old female patient who developed a spontaneous spinal epidural haematoma (SSEH) after being treated by rivaroxaban, a new agent for the prevention of venous thromboembolic events in orthopaedic surgery. Although the pathogenesis of SSEH is unclear, anticoagulant therapy is a known risk factor. The patient sustained a sudden onset of severe back pain in the thoracic spine, followed by paraplegia below T8, 2days after proximal tibial osteotomy and rivaroxaban therapy. Magnetic resonance imaging (MRI) of the whole spine demonstrated a ventral SSEH from C2 to T8. Whilst preparing for the emergency evacuation of the SSEH, the neurological symptoms recovered spontaneously 4h after onset without surgery. After monitored bed rest for 48h the MRI was repeated and the SSEH was no longer present. This rare condition of spinal cord compression and unusually rapid spontaneous recovery has not previously been reported following rivaroxaban therap
- …