8,476 research outputs found
Disentanglement and decoherence in two-spin and three-spin systems under dephasing
We compare disentanglement and decoherence rates within two-spin and
three-spin entangled systems subjected to all possible combinations of local
and collective pure dephasing noise combinations. In all cases, the bipartite
entanglement decay rate is found to be greater than or equal to the
dephasing-decoherence rates and often significantly greater. This sharpens
previous results for two-spin systems [T. Yu and J. H. Eberly Phys. Rev. B 68,
165322 (2003)] and extends them to the three-spin context.Comment: 17 page
Intruders in the Dust: Air-Driven Granular Size Separation
Using MRI and high-speed video we investigate the motion of a large intruder
particle inside a vertically shaken bed of smaller particles. We find a
pronounced, non-monotonic density dependence, with both light and heavy
intruders moving faster than those whose density is approximately that of the
granular bed. For light intruders, we furthermore observe either rising or
sinking behavior, depending on intruder starting height, boundary condition and
interstitial gas pressure. We map out the phase boundary delineating the rising
and sinking regimes. A simple model can account for much of the observed
behavior and show how the two regimes are connected by considering pressure
gradients across the granular bed during a shaking cycle.Comment: 5 pages, 4 figure
Experimental Violation of Bell's Inequality in Spatial-Parity Space
We report the first experimental violation of Bell's inequality in the
spatial domain using the Einstein--Podolsky--Rosen state. Two-photon states
generated via optical spontaneous parametric downconversion are shown to be
entangled in the parity of their one-dimensional transverse spatial profile.
Superpositions of Bell states are prepared by manipulation of the optical
pump's transverse spatial parity--a classical parameter. The Bell-operator
measurements are made possible by devising simple optical arrangements that
perform rotations in the one-dimensional spatial-parity space of each photon of
an entangled pair and projective measurements onto a basis of even--odd
functions. A Bell-operator value of 2.389 +- 0.016 is recorded, a violation of
the inequality by more than 24 standard deviations.Comment: 10 pages, 3 figures, 1 Tabl
Hierarchical Temporal Representation in Linear Reservoir Computing
Recently, studies on deep Reservoir Computing (RC) highlighted the role of
layering in deep recurrent neural networks (RNNs). In this paper, the use of
linear recurrent units allows us to bring more evidence on the intrinsic
hierarchical temporal representation in deep RNNs through frequency analysis
applied to the state signals. The potentiality of our approach is assessed on
the class of Multiple Superimposed Oscillator tasks. Furthermore, our
investigation provides useful insights to open a discussion on the main aspects
that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian
Workshop on Neural Networks, WIRN 201
Subdiffusion and cage effect in a sheared granular material
We investigate experimentally the diffusion properties of a bidimensional
bidisperse dry granular material under quasistatic cyclic shear.The comparison
of these properties with results obtained both in computer simulations of hard
spheres systems and Lenard-Jones liquids and experiments on colloidal systems
near the glass transition demonstrates a strong analogy between the behaviour
of granular matter and these systems. More specifically, we study in detail the
cage dynamics responsible for the subdiffusion in the slow relaxation regime,
and obtain the values of relevant time and length scales.Comment: 4 pages, 6 figures, submitted to PR
Correlation induced non-Abelian quantum holonomies
In the context of two-particle interferometry, we construct a parallel
transport condition that is based on the maximization of coincidence intensity
with respect to local unitary operations on one of the subsystems. The
dependence on correlation is investigated and it is found that the holonomy
group is generally non-Abelian, but Abelian for uncorrelated systems. It is
found that our framework contains the L\'{e}vay geometric phase [2004 {\it J.
Phys. A: Math. Gen.} {\bf 37} 1821] in the case of two-qubit systems undergoing
local SU(2) evolutions.Comment: Minor corrections; journal reference adde
Propagating front in an excited granular layer
A partial monolayer of ~ 20000 uniform spherical steel beads, vibrated
vertically on a flat plate, shows remarkable ordering transitions and
cooperative behavior just below 1g maximum acceleration. We study the stability
of a quiescent disordered or ``amorphous'' state formed when the acceleration
is switched off in the excited ``gaseous'' state. The transition from the
amorphous state back to the gaseous state upon increasing the plate's
acceleration is generally subcritical: An external perturbation applied to one
bead initiates a propagating front that produces a rapid transition. We measure
the front velocity as a function of the applied acceleration. This phenomenon
is explained by a model based on a single vibrated particle with multiple
attractors that is perturbed by collisions. A simulation shows that a
sufficiently high rate of interparticle collisions can prevent trapping in the
attractor corresponding to the nonmoving ground state.Comment: 16 pages, 9 figures, revised version, to appear in Phys. Rev. E, May
199
A Model for Force Fluctuations in Bead Packs
We study theoretically the complex network of forces that is responsible for
the static structure and properties of granular materials. We present detailed
calculations for a model in which the fluctuations in the force distribution
arise because of variations in the contact angles and the constraints imposed
by the force balance on each bead of the pile. We compare our results for force
distribution function for this model, including exact results for certain
contact angle probability distributions, with numerical simulations of force
distributions in random sphere packings. This model reproduces many aspects of
the force distribution observed both in experiment and in numerical simulations
of sphere packings
Instability of dilute granular flow on rough slope
We study numerically the stability of granular flow on a rough slope in
collisional flow regime in the two-dimension. We examine the density dependence
of the flowing behavior in low density region, and demonstrate that the
particle collisions stabilize the flow above a certain density in the parameter
region where a single particle shows an accelerated behavior. Within this
parameter regime, however, the uniform flow is only metastable and is shown to
be unstable against clustering when the particle density is not high enough.Comment: 4 pages, 6 figures, submitted to J. Phys. Soc. Jpn.; Fig. 2 replaced;
references added; comments added; misprints correcte
Heap Formation in Granular Media
Using molecular dynamics (MD) simulations, we find the formation of heaps in
a system of granular particles contained in a box with oscillating bottom and
fixed sidewalls. The simulation includes the effect of static friction, which
is found to be crucial in maintaining a stable heap. We also find another
mechanism for heap formation in systems under constant vertical shear. In both
systems, heaps are formed due to a net downward shear by the sidewalls. We
discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9
- …