294 research outputs found

    Investigating faculty learning in the context of community-engaged scholarship

    Get PDF
    This study investigates faculty learning resulting from a faculty development program implemented at North Carolina State University to build capacity for community-engaged scholarship (CES). Previous work done under the auspices of Community Campus Partnerships for Health is extended by modifying an extant scale used to assess CES competencies and adding a retrospective pre-test to account for response-shift bias. This study also builds upon earlier work on assessment of student learning through the use of reflection by examining reflection products written by faculty at three points during the 12-month program. Quantitative analysis of responses to the CES competencies scale indicated a significant response-shift bias (participants overestimated their knowledge about CES at the start of the program). Qualitative investigation of participants’ reflection products suggests they learned new language for CES, achieved new discoveries about their community-engaged work, and often redefined their scholarly identities through the lens of engaged scholarship. Implications of this study include the value-added by examining faculty learning through reflection products as well as self-report scales, the need to build faculty capacity for learning through reflection, and the proposal of new strategies for documenting faculty learning from faculty development programs

    Phenomenological glass model for vibratory granular compaction

    Full text link
    A model for weakly excited granular media is derived by combining the free volume argument of Nowak et al. [Phys. Rev. E 57, 1971 (1998)] and the phenomenological model for supercooled liquids of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965)]. This is made possible by relating the granular excitation parameter \Gamma, defined as the peak acceleration of the driving pulse scaled by gravity, to a temperature-like parameter \eta(\Gamma). The resulting master equation is formally identical to that of Bouchaud's trap model for glasses [J. Phys. I 2, 1705 (1992)]. Analytic and simulation results are shown to compare favourably with a range of known experimental behaviour. This includes the logarithmic densification and power spectrum of fluctuations under constant \eta, the annealing curve when \eta is varied cyclically in time, and memory effects observed for a discontinuous shift in \eta. Finally, we discuss the physical interpretation of the model parameters and suggest further experiments for this class of systems.Comment: 2 references added; some figure labels tweaked. To appear in PR

    A nonlinear hydrodynamical approach to granular materials

    Full text link
    We propose a nonlinear hydrodynamical model of granular materials. We show how this model describes the formation of a sand pile from a homogeneous distribution of material under gravity, and then discuss a simulation of a rotating sandpile which shows, in qualitative agreement with experiment, a static and dynamic angle of repose.Comment: 17 pages, 14 figures, RevTeX4; minor changes to wording and some additional discussion. Accepted by Phys. Rev.

    Effect of boundaries on the force distributions in granular media

    Get PDF
    The effect of boundaries on the force distributions in granular media is illustrated by simulations of 2D packings of frictionless, Hertzian spheres. To elucidate discrepancies between experimental observations and theoretical predictions, we distinguish between the weight distribution {\cal P} (w) measured in experiments and analyzed in the q-model, and the distribution of interparticle forces P(f). The latter one is robust, while {\cal P}(w) can be obtained once the local packing geometry and P(f) are known. By manipulating the (boundary) geometry, we show that {\cal P}(w) can be varied drastically.Comment: 4 pages, 4 figure

    Modeling relaxation and jamming in granular media

    Full text link
    We introduce a stochastic microscopic model to investigate the jamming and reorganization of grains induced by an object moving through a granular medium. The model reproduces the experimentally observed periodic sawtooth fluctuations in the jamming force and predicts the period and the power spectrum in terms of the controllable physical parameters. It also predicts that the avalanche sizes, defined as the number of displaced grains during a single advance of the object, follow a power-law, P(s)sτP(s)\sim s^{-\tau}, where the exponent is independent of the physical parameters

    Transport Properties near the z=2 Insulator-Superconductor Transition

    Full text link
    We consider here the fluctuation conductivity near the point of the insulator-superconductor transition in a system of regular Josephson junction arrays in the presence of particle-hole asymmetry or equivalently homogeneous charge frustration. The transition is characterised by the dynamic critical exponent z=2z=2, opening the possibility of the perturbative renormalization-group (RG) treatment. The quartic interaction in the Ginzburg-Landau action and the coupling to the Ohmic heat bath, giving the finite quasiparticle life-time, lead to the non-monotonic behavior of the dc conductivity as a function of temperature in the leading logarithmic approximation.Comment: Revised version for publication. To appear in PR

    Strong-coupling perturbation theory for the two-dimensional Bose-Hubbard model in a magnetic field

    Full text link
    The Bose-Hubbard model in an external magnetic field is investigated with strong-coupling perturbation theory. The lowest-order secular equation leads to the problem of a charged particle moving on a lattice in the presence of a magnetic field, which was first treated by Hofstadter. We present phase diagrams for the two-dimensional square and triangular lattices, showing a change in shape of the phase lobes away from the well-known power-law behavior in zero magnetic field. Some qualitative agreement with experimental work on Josephson-junction arrays is found for the insulating phase behavior at small fields.Comment: 7 pages, 5 figures include

    Mechanisms for slow strengthening in granular materials

    Full text link
    Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F_max experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time \tau. The layer strength increases roughly logarithmically with \tau -only- if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by cycling of the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.

    The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction

    Full text link
    We study the one-dimensional Bose-Hubbard model using the Density-Matrix Renormalization Group (DMRG).For the cases of on-site interactions and additional nearest-neighbor interactions the phase boundaries of the Mott-insulators and charge density wave phases are determined. We find a direct phase transition between the charge density wave phase and the superfluid phase, and no supersolid or normal phases. In the presence of nearest-neighbor interaction the charge density wave phase is completely surrounded by a region in which the effective interactions in the superfluid phase are repulsive. It is known from Luttinger liquid theory that a single impurity causes the system to be insulating if the effective interactions are repulsive, and that an even bigger region of the superfluid phase is driven into a Bose-glass phase by any finite quenched disorder. We determine the boundaries of both regions in the phase diagram. The ac-conductivity in the superfluid phase in the attractive and the repulsive region is calculated, and a big superfluid stiffness is found in the attractive as well as the repulsive region.Comment: 19 pages, 30 figure
    corecore