218 research outputs found

    Ab initio no-core solutions for 6^6Li

    Full text link
    We solve for properties of 6^6Li in the ab initio No-Core Full Configuration approach and we separately solve for its ground state and JĎ€=22+J^{\pi}=2_{2}^{+} resonance with the Gamow Shell Model in the Berggren basis. We employ both the JISP16 and chiral NNLOopt_{opt} realistic nucleon-nucleon interactions and investigate the ground state energy, excitation energies, point proton root-mean-square radius and a suite of electroweak observables. We also extend and test methods to extrapolate the ground state energy, point proton root-mean-square radius, and electric quadrupole moment. We attain improved estimates of these observables in the No-Core Full Configuration approach by using basis spaces up through Nmax_{max}=18 that enable more definitive comparisons with experiment. Using the Density Matrix Renormalization Group approach with the JISP16 interaction, we find that we can significantly improve the convergence of the Gamow Shell Model treatment of the 6^6Li ground state and JĎ€=22+J^{\pi}=2_{2}^{+} resonance by adopting a natural orbital single-particle basis.Comment: 25 pages, 18 figure

    Nuclear structure in Parity Doublet Model

    Full text link
    Using an extended parity doublet model with the hidden local symmetry, we study the properties of nuclei in the mean field approximation to see if the parity doublet model could reproduce nuclear properties and also to estimate the value of the chiral invariant nucleon mass m0m_0 preferred by nuclear structure. We first determined our model parameters using the inputs from free space and from nuclear matter properties. Then, we study some basic nuclear properties such as the nuclear binding energy with several different choices of the chiral invariant mass. We observe that our results, especially the nuclear binding energy, approach the experimental values as m0m_0 is increased until m0=700m_0=700 MeV and start to deviate more from the experiments afterwards with m0m_0 larger than m0=700m_0=700 MeV, which may imply that m0=700m_0=700 MeV is preferred by some nuclear properties.Comment: 8 pages, 2 figure

    Ab initio no core full configuration approach for light nuclei

    Get PDF
    Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results
    • …
    corecore