1,987 research outputs found

    Implications of the measurements of B_s - B_s bar mixing on SUSY models

    Full text link
    We derive constraints on the mass insertion parameters from the recent measurements of B_s - B_s bar mixing, and discuss their implications on SUSY breaking mediation mechanisms and SUSY flavor models. Some SUSY flavor models are already excluded or disfavored by B_s - B_s bar mixing. We also discuss how to test the SM and SUSY models in the future experiments, by studying other CP violating observables related to b -> s transition, such as the time-dependent CP asymmetry in B -> phi K_S and the direct CP asymmetry in B -> X_s gamma.Comment: 29 page

    Lepton masses and mixing angles from heterotic orbifold models

    Full text link
    We systematically study the possibility for realizing realistic values of lepton mass ratios and mixing angles by using only renormalizable Yukawa couplings derived from heterotic Z6Z_6-I orbifold. We assume one pair of up and down sector Higgs fields. We consider both the Dirac neutrino mass scenario and the seesaw scenario with degenerate right-handed majorana neutrino masses. It is found that realistic values of the charged lepton mass ratios, me/mτm_e/m_\tau and mÎŒ/mτm_\mu/m_\tau, the neutrino mass squared difference ratio, Δm312/Δm212\Delta m^2_{31}/\Delta m^2_{21}, and the lepton mixing angles can be obtained in certain cases.Comment: 22 pages, late

    Electrical spin injection and detection in an InAs quantum well

    Full text link
    We demonstrate fully electrical detection of spin injection in InAs quantum wells. A spin polarized current is injected from a NiFe thin film to a two-dimensional electron gas (2DEG) made of InAs based epitaxial multi-layers. Injected spins accumulate and diffuse out in the 2DEG, and the spins are electrically detected by a neighboring NiFe electrode. The observed spin diffusion length is 1.8 um at 20 K. The injected spin polarization across the NiFe/InAs interface is 1.9% at 20 K and remains at 1.4% even at room temperature. Our experimental results will contribute significantly to the realization of a practical spin field effect transistor

    Realization of giant magnetoelectricity in helimagnets

    Get PDF
    We show that low field magnetoelectric (ME) properties of helimagnets Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22 can be efficiently tailored by Al-substitution level. As x increases, the critical magnetic field for switching electric polarization is systematically reduced from ~1 T down to ~1 mT, and the ME susceptibility is greatly enhanced to reach a giant value of 2.0 x 10^4 ps/m at an optimum x = 0.08. We find that control of nontrivial orbital moment in the octahedral Fe sites through the Al-substitution is crucial for fine tuning of magnetic anisotropy and obtaining the conspicuously improved ME characteristics

    B(d) --> phi K(S) CP asymmetries as an important probe of supersymmetry

    Full text link
    The decay Bd→ϕKSB_d \to \phi K_S is a special probe of physics beyond the Standard Model (SM), since it has no SM tree level contribution. Motivated by recent data suggesting a deviation from the SM for its time-dependent CP asymmetry, we examine supersymmetric explanations. Chirality preserving contributions are generically small, unless gluino is relatively light. Higgs contributions are also too small to explain a large asymmetry. Chirality flipping LRLR and RLRL gluino contributions actually can provide sizable effects without conflict with all related results. We discuss how various insertions can be distinguished, and argue the needed sizes of mass insertions are reasonable.Comment: 5 pages, 4 figures. A few typos in the abstract are corrected. This is a shortened version of hep-ph/021209

    B --> Phi K_S and Supersymmetry

    Full text link
    The rare decay B --> Phi K_S is a well-known probe of physics beyond the Standard Model because it arises only through loop effects yet has the same time-dependent CP asymmetry as B --> Psi K_S. Motivated by recent data suggesting new physics in B --> Phi K_S, we look to supersymmetry for possible explanations, including contributions mediated by gluino loops and by Higgs bosons. Chirality-preserving LL and RR gluino contributions are generically small, unless gluinos and squarks masses are close to the current lower bounds. Higgs contributions are also too small to explain a large asymmetry if we impose the current upper limit on B(B_s --> mu mu). On the other hand, chirality-flipping LR and RL gluino contributions can provide sizable effects and while remaining consistent with related results in B --> Psi K_S, Delta M_s, B --> X_s gamma and other processes. We discuss how the LR and RL insertions can be distinguished using other observables, and we provide a string-based model and other estimates to show that the needed sizes of mass insertions are reasonable.Comment: 33 pages, 32 figures, Updated version for PRD. Includes discussions of other recent works on this topic. Added discussions & plots for gluino mass dependence and effects of theoretical uncertaintie

    CP--violating Chargino Contributions to the Higgs Coupling to Photon Pairs in the Decoupling Regime of Higgs Sector

    Full text link
    In most supersymmetric theories, charginos χ~1,2±\tilde{\chi}^\pm_{1,2} belong to the class of the lightest supersymmetric particles and the couplings of Higgs bosons to charginos are in general complex so that the CP--violating chargino contributions to the loop--induced coupling of the lightest Higgs boson to photon pairs can be sizable even in the decoupling limit of large pseudoscalar mass mAm_A with only the lightest Higgs boson kinematically accessible at future high energy colliders. We introduce a specific benchmark scenario of CP violation consistent with the electric dipole moment constraints and with a commonly accepted baryogenesis mechanism in the minimal supersymmetric Standard Model. Based on the benchmark scenario of CP violation, we demonstrate that the fusion of the lightest Higgs boson in linearly polarized photon--photon collisions can allow us to confirm the existence of the CP--violating chargino contributions {\it even in the decoupling regime of the Higgs sector} for nearly degenerate SU(2) gaugino and higgsino mass parameters of about the electroweak scale.Comment: 1+13 pages, 3 eps figure

    Repression of FLOWERING LOCUS T Chromatin by Functionally Redundant Histone H3 Lysine 4 Demethylases in Arabidopsis

    Get PDF
    FLOWERING LOCUS T (FT) plays a key role as a mobile floral induction signal that initiates the floral transition. Therefore, precise control of FT expression is critical for the reproductive success of flowering plants. Coexistence of bivalent histone H3 lysine 27 trimethylation (H3K27me3) and H3K4me3 marks at the FT locus and the role of H3K27me3 as a strong FT repression mechanism in Arabidopsis have been reported. However, the role of an active mark, H3K4me3, in FT regulation has not been addressed, nor have the components affecting this mark been identified. Mutations in Arabidopsis thaliana Jumonji4 (AtJmj4) and EARLY FLOWERING6 (ELF6), two Arabidopsis genes encoding Jumonji (Jmj) family proteins, caused FT-dependent, additive early flowering correlated with increased expression of FT mRNA and increased H3K4me3 levels within FT chromatin. Purified recombinant AtJmj4 protein possesses specific demethylase activity for mono-, di-, and trimethylated H3K4. Tagged AtJmj4 and ELF6 proteins associate directly with the FT transcription initiation region, a region where the H3K4me3 levels were increased most significantly in the mutants. Thus, our study demonstrates the roles of AtJmj4 and ELF6 as H3K4 demethylases directly repressing FT chromatin and preventing precocious flowering in Arabidopsis
    • 

    corecore