52 research outputs found

    CT findings in apical versus basal involvement of pulmonary tuberculosis

    Get PDF
    PURPOSEWe aimed to compare clinical features and computed tomog- raphy (CT) findings of pulmonary tuberculosis (TB) in lower lobe basal segments and upper lobe apical or apicoposterior segments. MATERIALS AND METHODSWe retrospectively reviewed medical records and chest CT scans of 986 adults who were diagnosed with active pulmo- nary TB. Active pulmonary TB confined to the basal segments was found in 21 patients. Sixty patients had disease localized to the apical or apicoposterior segments only. Clinical features and CT abnormalities of the lung parenchyma, airways, me- diastinal and hilar lymph nodes, and pleura were compared between these two groups. RESULTSA significant difference was observed between two groups in terms of underlying disease prevalence associated with an im- munocompromised state (basal, 6/21, 28.6%; apical or apico- posterior, 3/60, 5%; P = 0.008). Chest CT findings, including consolidation (P = 0.0016), lymphadenopathy (P = 0.0297), and pleural effusion (P = 0.008), were more common in ba- sal segment TB than in apical or apicoposterior segment TB. Small nodules were less common in basal segment TB than in apical or apicoposterior segment TB (P = 0.0299). The tree-in- bud sign was the most common CT finding in both basal seg- ment TB (17/21, 81%) and apical or apicoposterior segment TB groups (53/60, 88.3%) (P = 0.4633). CONCLUSIONLower lobe basal segment TB was more commonly present with common CT findings of primary pulmonary TB including consolidation, mediastinal and hilar lymphadenopathy, and pleural effusion than apical or apicoposterior segment TB

    Consecutive Junction-Induced Efficient Charge Separation Mechanisms for High-Performance MoS2/Quantum Dot Phototransistors.

    Get PDF
    Phototransistors that are based on a hybrid vertical heterojunction structure of two-dimensional (2D)/quantum dots (QDs) have recently attracted attention as a promising device architecture for enhancing the quantum efficiency of photodetectors. However, to optimize the device structure to allow for more efficient charge separation and transfer to the electrodes, a better understanding of the photophysical mechanisms that take place in these architectures is required. Here, we employ a novel concept involving the modulation of the built-in potential within the QD layers for creating a new hybrid MoS2/PbS QDs phototransistor with consecutive type II junctions. The effects of the built-in potential across the depletion region near the type II junction interface in the QD layers are found to improve the photoresponse as well as decrease the response times to 950 μs, which is the faster response time (by orders of magnitude) than that recorded for previously reported 2D/QD phototransistors. Also, by implementing an electric-field modulation of the MoS2 channel, our experimental results reveal that the detectivity can be as large as 1 × 1011 jones. This work demonstrates an important pathway toward designing hybrid phototransistors and mixed-dimensional van der Waals heterostructures.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007−2013)/ERC Grant Agreement no. 340538. This work was also supported by the National Research Foundation of Korea (NRF) (2015M2A2A6A02045252) and Samsung Global Research Outreach (Samsung GRO) program. In addition, S.M.M. would like to thank The Royal Society for financial support

    Hyperelastic, shape‐memorable, and ultra‐cell‐adhesive degradable polycaprolactone‐polyurethane copolymer for tissue regeneration

    Get PDF
    Novel polycaprolactone-based polyurethane (PCL-PU) copolymers with hyperelasticity, shape-memory, and ultra-cell-adhesion properties are reported as clinically applicable tissue-regenerative biomaterials. New isosorbide derivatives (propoxylated or ethoxylated ones) were developed to improve mechanical properties by enhanced reactivity in copolymer synthesis compared to the original isosorbide. Optimized PCL-PU with propoxylated isosorbide exhibited notable mechanical performance (50 MPa tensile strength and 1150% elongation with hyperelasticity under cyclic load). The shape-memory effect was also revealed in different forms (film, thread, and 3D scaffold) with 40%–80% recovery in tension or compression mode after plastic deformation. The ultra-cell-adhesive property was proven in various cell types which were reasoned to involve the heat shock protein-mediated integrin (α5 and αV) activation, as analyzed by RNA sequencing and inhibition tests. After the tissue regenerative potential (muscle and bone) was confirmed by the myogenic and osteogenic responses in vitro, biodegradability, compatible in vivo tissue response, and healing capacity were investigated with in vivo shape-memorable behavior. The currently exploited PCL-PU, with its multifunctional (hyperelastic, shape-memorable, ultra-celladhesive, and degradable) nature and biocompatibility, is considered a potential tissue- regenerative biomaterial, especially for minimally invasive surgery that requires small incisions to approach large defects with excellent regeneration capacity

    Complete Fracture of Sirolimus-Eluting Stent in a Saphenous Vein Graft to Left Anterior Descending Artery

    Get PDF
    Coronary stent fractures have been suggested as a potential new mechanism of restenosis. The mechanical properties of stents were designed not only to prevent vessel recoil, but also to resist the mechanical stress of vessel movement over millions of cardiac cycles. We present a case in which mechanical stress may have contributed to the fracture of a stent implanted in a saphenous vein graft (SVG) to the left coronary artery. The patient was admitted due to chest pain 2 years after receiving a coronary artery bypass graft. A coronary angiography revealed the culprit vessel to be the SVG to the left coronary artery. The graft was stenosed and was stented with a sirolimus-eluting stent. A 6-month follow-up coronary angiography revealed 80% in-stent restenosis with stent fracture. We re-intervened by balloon angioplasty. This is the first report of sirolimus-eluting stent fracture combined with restenosis of SVG in Korea

    Favorable response to doxorubicin combination chemotherapy does not yield good clinical outcome in patients with metastatic breast cancer with triple-negative phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We analyzed the responses to first line treatment and clinical outcomes of metastatic breast cancer patients treated with palliative doxorubicin/cyclophosphamide (AC) according to molecular cancer subtype.</p> <p>Methods</p> <p>A retrospective analysis was performed for 110 metastatic breast cancer patients selected on the basis of palliative AC treatment and the availability of immunohistochemical data for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2/neu) status.</p> <p>Results</p> <p>Of the 110 patients analyzed, 71 (64.5%) were hormone receptor positive (HR+), 14 (12.7%) were HER2+, and 25 (22.7%) were triple negative (TN). There were no differences in age, stage at diagnosis, total number of cycles of palliative chemotherapy, incidence of visceral metastasis, and metastatic sites with the exception of liver among breast cancer subtypes. The overall response rates to AC were 55.9% for the HR+ subgroup, 42.9% for the HER2+ subgroup, and 56.5% for the TN subgroup. The progression-free survival (PFS) in patients with HER2+ and TN were significantly shorter than in the HR+ (median PFS, 9.1 <it>vs </it>8.1 <it>vs </it>11.5 months, respectively; p = 0.0002). The overall survival (OS) was 25.4 months in the TN subgroup and 27.3 months in HER2+ subgroup. The median OS for these two groups was significantly shorter than for patients in the HR+ subgroup (median, 38.5 months; 95% CI, 30.1-46.9 months; p < 0.0001).</p> <p>Conclusions</p> <p>The response to palliative AC chemotherapy did not differ among breast cancer subtypes. Despite chemosensitivity for palliative AC, the TN subtype has a shorter overall survival than non-TN subtypes. Innovative treatment strategies should be developed to slow the course of disease.</p

    Successful Retrieval of a Fractured and Entrapped 0.035-Inch Terumo Wire in the Femoral Artery Using Biopsy Forceps

    Get PDF
    A 0.035-inch guide wire fracture and entrapment in a peripheral artery is a very rare complication, but when it does occur it may lead to life-threatening complications, such as perforation, thrombus formation, embolization, and subsequent limb ischemia. We describe our experience of successfully retrieving a fractured 0.035-inch Terumo guide wire in the external iliac artery using a biopsy forcep

    Molecular diagnosis of hereditary spherocytosis by multi-gene target sequencing in Korea: matching with osmotic fragility test and presence of spherocyte

    Get PDF
    Background Current diagnostic tests for hereditary spherocytosis (HS) focus on the detection of hemolysis or indirectly assessing defects of membrane protein, whereas direct methods to detect protein defects are complicated and difficult to implement. In the present study, we investigated the patterns of genetic variation associated with HS among patients clinically diagnosed with HS. Methods Multi-gene targeted sequencing of 43 genes (17 RBC membrane protein-encoding genes, 20 RBC enzyme-encoding genes, and six additional genes for the differential diagnosis) was performed using the Illumina HiSeq platform. Results Among 59 patients with HS, 50 (84.7%) had one or more significant variants in a RBC membrane protein-encoding genes. A total of 54 significant variants including 46 novel mutations were detected in six RBC membrane protein-encoding genes, with the highest number of variants found in SPTB (n = 28), and followed by ANK1 (n = 19), SLC4A1 (n = 3), SPTA1 (n = 2), EPB41 (n = 1), and EPB42 (n = 1). Concurrent mutations of genes encoding RBC enzymes (ALDOB, GAPDH, and GSR) were detected in three patients. UGT1A1 mutations were present in 24 patients (40.7%). Positive rate of osmotic fragility test was 86.8% among patients harboring HS-related gene mutations. Conclusions This constitutes the first large-scaled genetic study of Korean patients with HS. We demonstrated that multi-gene target sequencing is sensitive and feasible that can be used as a powerful tool for diagnosing HS. Considering the discrepancies of clinical and molecular diagnoses of HS, our findings suggest that molecular genetic analysis is required for accurate diagnosis of HS.Support was provided by: the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2A1A17069780) http://www.nrf.re.kr/
    corecore