518 research outputs found

    A Stakeholder analysis of the Soviet second economy

    Get PDF
    Thesis(Master) --KDI School:Master of Public Policy,2015This research aims to demonstrate, through a stakeholder analysis, that the institutionalization of the second economy in the Soviet Union was a natural byproduct of the interaction among three major stakeholders of Soviet society: the state, the bureaucracy, and the people. The three stakeholders responded to the incentive structure of the socialist economic system, interacting with each other in order to enhance their own interests. This research argues that their interaction was the internal necessity or dynamics that formed this informal market mechanism and elevated it to a characteristic feature of Soviet society1. Introduction 1.1 Literature Review 2. The Soviet State 2.1 Legal and Institutional Framework of the Soviet Economy 2.2 Economic Planning and Macroeconomic Disequilibria 3. The Soviet People 4. The Soviet Bureaucracy 4.1. Historical Analysis of the Structural Defect of the Soviet Bureaucracy 4.2. Corruption and Bureaucratic Entanglement with the Second Economy 5. Conflict of Interests between State and Bureaucracy 5.1. Bureaucratic Resistance against Andropov’s Reform 5.2. Perestroika and Bureaucratic Mass Defection 6. ConclusionmasterpublishedJae-hyoung CHOI

    Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>On the base of our previous study we were observed relevant studies on the hypothesis that the antiviral activity of quercetin 7-rhamnoside (Q7R), a flavonoid, won't relate ability of its antioxidant.</p> <p>Methods</p> <p>We were investigated the effects of Q7R on the cytopathic effects (CPE) by CPE reduction assay. Production of DNA fragment and reactive oxygen species (ROS) induced by PEDV infection were studied using DNA fragmentation assay and flow cytometry.</p> <p>Results</p> <p>In the course of this study it was discovered that Q7R is an extremely potent compound against PEDV. The addition of Q7R to PEDV-infected Vero cells directly reduced the formation of a visible cytopathic effect (CPE). Also, Q7R did not induce DNA fragmentation. Furthermore, ROS increased the infection of PEDV, which was strongly decreased by N-acetyl-L-cysteins (NAC). However, the increased ROS was not decreased by Q7R. Antiviral activity of antioxidants such as NAC, pyrrolidine dithiocarbamate (PDTC), and the vitamin E derivative, trolox, were hardly noticed.</p> <p>Conclusions</p> <p>We concluded that the inhibition of PEDV production by Q7R is not simply due to a general action as an antioxidants and is highly specific, as several other antioxidants (NAC, PDTC, trolox) are inactive against PEDV infection.</p

    Non-Einstein Viscosity Phenomenon of Acrylonitrile–Butadiene–Styrene Composites Containing Lignin–Polycaprolactone Particulates Highly Dispersed by High-Shear Stress

    Full text link
    Lignin powder was modified via ring-opening polymerization of caprolactone to form a lignin–polycaprolactone (LPCL) particulate. The LPCL particulates were mixed with an acrylonitrile–butadiene–styrene (ABS) matrix at an extremely high rotational speed of up to 3000 rpm, which was achieved by a closed-loop screw mixer and in-line melt extruder. Using this high-shear extruding mixer, the LPCL particulate size was controlled in the range of 3395 nm (conventional twin-screw extrusion) down to 638 nm (high-shear mixer of 3000 rpm) by altering the mixing speed and time. The resulting LPCL/ABS composites clearly showed non-Einstein viscosity phenomena, exhibiting reduced viscosity (2130 Pa·s) compared to the general extruded composite one (4270 Pa·s) at 1 s–1 and 210 °C. This is due to the conformational rearrangement and the increased free volume of ABS molecular chains in the vicinity of LPCL particulates. This was supported by the decreased glass transition temperature (Tg, 83.7 °C) of the LPCL/ABS composite specimens, for example, giving a 21.8% decrement compared to that (107 °C) of the neat ABS by the incorporation of 10 wt % LPCL particulates in ABS. The LPCL particulate morphology, damping characteristics, and light transmittance of the developed composites were thoroughly investigated at various levels of applied shear rates and mixing conditions. The non-Einstein rheological phenomena stemming from the incorporation of LPCL particulates suggest an interesting plasticization methodology: to improve the processability of high-loading filler/polymer composites and ultra-high molecular weight polymers that are difficult to process because of their high viscosity

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Full text link
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Get PDF
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Robust Co-catalytic Performance of Nanodiamonds Loaded on WO3 for the Decomposition of Volatile Organic Compounds under Visible Light

    Get PDF
    Proper co-catalysts (usually noble metals), combined with semiconductor materials, are commonly needed to maximize the efficiency of photocatalysis. Search for cost-effective and practical alternatives for noble-metal co-catalysts is under intense investigation. In this work, nanodiamond (ND), which is a carbon nanomaterial with a unique sp(3)(core)/sp(2)(shell) structure, was combined with WO3 (as an alternative co-catalyst for Pt) and applied for the degradation of volatile organic compounds under visible light. NDs-loaded WO3 showed a highly enhanced photocatalytic activity for the degradation of acetaldehyde (similar to 17 times higher than bare WO3), which is more efficient than other well-known co-catalysts (Ag, Pd, Au, and CuO) loaded onto WO3 and comparable to Pt-loaded WO3. Various surface modifications of ND and photoelectochemical measurements revealed that the graphitic carbon shell (sp(2)) on the diamond core (spa) plays a crucial role in charge separation and the subsequent interfacial charge transfer. As a result, ND/WO3 showed much higher production of OH radicals than bare WO3 under visible light. Since ND has a highly transparent characteristic, the light shielding that is often problematic with other carbon-based co-catalysts was considerably lower with NDs-loaded WO3. As a result, the photocatalytic activity of NDs/WO3 was higher than that of WO3 loaded with other carbon-based co-catalysts (graphene oxide or reduced graphene oxide). A range of spectroscopic and photo(electro)chemical techniques were systematically employed to investigate the properties of NDs-loaded WO3. ND is proposed as a cost-effective and practical nanomaterial to replace expensive noble-metal co-catalysts.1124Ysciescopu

    Level of Contamination of Positive Airway Pressure Devices Used in Obstructive Sleep Apnea

    Get PDF
    Objectives. No study has yet evaluated the degree of contamination after the total disassembly of continuous positive airway pressure (CPAP) devices. We investigated the extent of contamination of CPAP devices used daily by patients with obstructive sleep apnea (OSA) by disassembling the systems and identifying the factors that influenced the degree of CPAP contamination. Methods. We conducted a chart review of the medical records of patients with OSA for whom the CPAP devices were disassembled and cleaned. Two skilled technicians photographed the levels of contamination of each component and scored them using a visual analog scale. Patients’ clinical characteristics and records of CPAP device usage were statistically analyzed to identify characteristics that were significantly associated with the degree of CPAP device contamination. Results. Among the 55 participants, both the external components, including the mask and tube, and the internal components, such as the humidifier and the interior of the main body, showed a substantial degree of contamination. The total and average daily duration of usage of the CPAP device did not show significant associations with the degree of contamination. Age was most consistently associated with the degree of contamination, such as in masks, humidifiers, and interior and exterior main parts. The degree of contamination of the internal components of the device was significantly correlated with the degree of contamination of the external components. Conclusion. Age-specific guidelines for managing the hygiene of external and internal CPAP components should be prepared
    corecore