1,042 research outputs found

    Production of Transgenic Cloned Miniature Pigs with Membrane-bound Human Fas Ligand (FasL) by Somatic Cell Nuclear Transfer

    Get PDF
    Cell-mediated xenograft rejection, including NK cells and CD8+ CTL, is a major obstacle in successful pig-to-human xenotransplantation. Human CD8+ CTL and NK cells display high cytotoxicity for pig cells, mediated at least in part by the Fas/FasL pathway. To prevent cell-mediated xenocytotoxicity, a membrane-bound form of human FasL (mFasL) was generated as an inhibitor for CTL and NK cell cytotoxicity that could not be cleaved by metalloproteinase to produce putative soluble FasL. We produced two healthy transgenic pigs harboring the mFasL gene via somatic cell nuclear transfer (SCNT). In a cytotoxicity assay using transgenic clonal cell lines and transgenic pig ear cells, the rate of CD8+ CTL-mediated cytotoxicity was significantly reduced in transgenic pig's ear cells compared with that in normal minipig fetal fibroblasts. Our data indicate that grafts of transgenic pigs expressing membrane-bound human FasL control the cellular immune response to xenografts, creating a window of opportunity to facilitate xenograft survival

    PKCε-mediated ERK1/2 activation involved in radiation-induced cell death in NIH3T3 cells

    Get PDF
    AbstractProtein kinase C (PKC) isoforms play distinct roles in cellular functions. We have previously shown that ionizing radiation activates PKC isoforms (α, δ, ε, and ζ), however, isoform-specific sensitivities to radiation and its exact mechanisms in radiation mediated signal transduction are not fully understood. In this study, we showed that overexpression of PKC isoforms (α, δ, ε, and ζ) increased radiation-induced cell death in NIH3T3 cells and PKCε overexpression was predominantly responsible. In addition, PKCε overexpression increased ERK1/2 activation without altering other MAP-kinases such as p38 MAPK or JNK. Co-transfection of dominant negative PKCε (PKCε-KR) blocked both PKCε-mediated ERK1/2 activation and radiation-induced cell death, while catalytically active PKCε construction augmented these phenomena. When the PKCε overexpressed cells were pretreated with PD98059, MEK inhibitor, radiation-induced cell death was inhibited. Co-transfection of the cells with a mutant of ERK1 or -2 (ERK1-KR or ERK2-KR) also blocked these phenomena, and co-transfection with dominant negative Ras or Raf cDNA revealed that PKCε-mediated ERK1/2 activation was Ras–Raf-dependent. In conclusion, PKCε-mediated ERK1/2 activation was responsible for the radiation-induced cell death

    Identification of Gene Expression Signature Modulated by Nicotinamide in a Mouse Bladder Cancer Model

    Get PDF
    BACKGROUND: Urinary bladder cancer is often a result of exposure to chemical carcinogens such as cigarette smoking. Because of histological similarity, chemically-induced rodent cancer model was largely used for human bladder cancer studies. Previous investigations have suggested that nicotinamide, water-soluble vitamin B3, may play a key role in cancer prevention through its activities in cellular repair. However, to date, evidence towards identifying the genetic alterations of nicotinamide in cancer prevention has not been provided. Here, we search for the molecular signatures of cancer prevention by nicotinamide using a N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced urinary bladder cancer model in mice. METHODOLOGY/PRINCIPAL FINDINGS: Via microarray gene expression profiling of 20 mice and 233 human bladder samples, we performed various statistical analyses and immunohistochemical staining for validation. The expression patterns of 893 genes associated with nicotinamide activity in cancer prevention were identified by microarray data analysis. Gene network analyses of these 893 genes revealed that the Myc and its associated genes may be the most important regulator of bladder cancer prevention, and the gene expression signature correlated well with protein expression data. Comparison of gene expression between human and mouse revealed that BBN-induced mouse bladder cancers exhibited gene expression profiles that were more similar to those of invasive human bladder cancers than to those of non-invasive human bladder cancers. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that nicotinamide plays an important role as a chemo-preventive and therapeutic agent in bladder cancer through the regulation of the Myc oncogenic signature. Nicotinamide may represent a promising therapeutic modality in patients with muscle-invasive bladder cancer

    Polarity engineering in polycrystalline ZnO by inversion boundaries

    Get PDF
    Two distinctive polarity-engineered microstructures were obtained in polycrystalline ZnO ceramics by inducing two different types of inversion boundaries (IBs) inside individual grains to examine the effect of the different polarities on the varistor performances. The presence of head-to-head IBs induced by the addition of Sb and tail-to-tail IBs by doping Ti was directly confirmed by the characteristic geometry of the chemical etch pits. It was proposed that a consequent polarity on the grain boundary planes, which are affected by the presence of head-to-head IBs is crucial in exhibiting the superior performance of ZnO varistors.open2

    Identification of Ambient Molecular Clouds Associated with Galactic Supernova Remnant IC443

    Full text link
    The Galactic supernova remnant (SNR) IC443 is one of the most studied core-collapse SNRs for its interaction with molecular clouds. However, the ambient molecular clouds with which IC443 is interacting have not been thoroughly studied and remain poorly understood. Using Five College Radio Astronomy Observatory 14m telescope, we obtained fully sampled maps of ~ 1{\deg} \times 1{\deg} region toward IC443 in the 12CO J=1-0 and HCO+ J=1-0 lines. In addition to the previously known molecular clouds in the velocity range v_lsr = -6 to -1 km/s (-3 km/s clouds), our observations reveal two new ambient molecular cloud components: small (~ 1') bright clouds in v_lsr = -8 to -3 km/s (SCs), and diffuse clouds in v_lsr = +3 to +10 km/s (+5 km/s clouds). Our data also reveal the detailed kinematics of the shocked molecular gas in IC443, however the focus of this paper is the physical relationship between the shocked clumps and the ambient cloud components. We find strong evidence that the SCs are associated with the shocked clumps. This is supported by the positional coincidence of the SCs with shocked clumps and other tracers of shocks. Furthermore, the kinematic features of some shocked clumps suggest that these are the ablated material from the SCs upon the impact of the SNR shock. The SCs are interpreted as dense cores of parental molecular clouds that survived the destruction by the pre-supernova evolution of the progenitor star or its nearby stars. We propose that the expanding SNR shock is now impacting some of the remaining cores and the gas is being ablated and accelerated producing the shocked molecular gas. The morphology of the +5 km/s clouds suggests an association with IC443. On the other hand, the -3 km/s clouds show no evidence for interaction.Comment: Accepted for publication in ApJ. 15 pages (with emulateapj.cls), 17 figures, and 2 table
    corecore