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Abstract

Protein kinase C (PKC) isoforms play distinct roles in cellular functions. We have previously shown that ionizing radiation activates PKC

isoforms (a, y, q, and ~), however, isoform-specific sensitivities to radiation and its exact mechanisms in radiation mediated signal

transduction are not fully understood. In this study, we showed that overexpression of PKC isoforms (a, y, q, and ~) increased radiation-

induced cell death in NIH3T3 cells and PKCq overexpression was predominantly responsible. In addition, PKCq overexpression increased

ERK1/2 activation without altering other MAP-kinases such as p38 MAPK or JNK. Co-transfection of dominant negative PKCq (PKCq-KR)
blocked both PKCq-mediated ERK1/2 activation and radiation-induced cell death, while catalytically active PKCq construction augmented

these phenomena. When the PKCq overexpressed cells were pretreated with PD98059, MEK inhibitor, radiation-induced cell death was

inhibited. Co-transfection of the cells with a mutant of ERK1 or -2 (ERK1-KR or ERK2-KR) also blocked these phenomena, and co-

transfection with dominant negative Ras or Raf cDNA revealed that PKCq-mediated ERK1/2 activation was Ras–Raf-dependent. In

conclusion, PKCq-mediated ERK1/2 activation was responsible for the radiation-induced cell death.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

ERK1/2 pathway is known to be critical in the control of

cellular growth and cell survival responses to mitogenic

signals in many different cell systems. It is generally

accepted that activation of the ERK1/2 pathway delivers

a survival signal that counteracts proapoptotic effects

associated with JNK and p38 activations [1,2]. On the

other hand, a requirement for ERK1/2 in mediating cispla-

tin-induced apoptosis of human cervical carcinoma and

ovarian cell lines [3,4] has also been demonstrated. More-

over, persistent activation of ERK1/2 also contributes to

glutamate-induced oxidative toxicity [5].

The pathways involved in the activation of these MAPK

cascades have been well established for ERK1/2 and are

activated by phosphorylation of both threonine and tyrosine

residues which are catalysed by MAPK kinase, namely

MEK1 and MEK2 [6]. MEKs are in turn regulated by serine

phosphorylation by severalMAPK kinase kinases (MKKKs),

including Raf-1. However, upstream elements of the cascade

are not well characterized. ERK pathway triggered byGPCRs

is shown to be sensitive to genestein, suggesting the involve-

ment of tyrosine kinases [7–9].More precisely, several recent

studies implicate Src kinases in GPCR-mediated activation of

the ERK1/2 pathway [10]. Protein kinase C (PKC)-depend-

ent and independent pathways have been suggested for the

upstream elements. Concerning PKC-dependent mecha-

nisms, it is well established that phorbol esters lead to a rapid

and massive activation of ERK1/2 in most cell types [11].

While both conventional PKCs (cPKCs like a, h1, h2, and g)
and novel PKCs (nPKC such as y, q, u and D) are activated by
phorbol-12-myristate 13-acetate (PMA), only cPKCs are

Ca2 +-dependent. Atypical PKCs (aPKCs such as ~ and L/E)
are neither activated by Ca2 + nor phorbol esters, although
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they can bind diacylglycerol (DAG). The existence of a

family of PKC isoforms suggests that individual PKCs may

exert specific role in signal transduction.

In vitro, glycated serum albumin-induced vascular

smooth muscle cell proliferation is dependent on ERK1/2

pathway which is regulated by PKCy [10]. PKCa and -q
have been shown to activate Raf-1 [12] and to regulate

transcription factors including AP-1 and NF-nB [13]. In

addition, respiratory syncytial virus infection results in

activation of PKCh1, y, q, and A, leading to activation of

ERK1/2 [14]. Recent studies show that translocation of

PKCq and -y to membrane is required for UV-induced

activation of MAPK and apoptosis [15]. Moreover, PKCq
modulates NF-nB and AP-1 via MAPK [16] and is required

for mechano-sensitive activation of ERK1/2 [17]. PKCq-
mediated induction of Ras-ERK pathway by a-phenyl-N-

tert-butylnitron treatment [18] and thrombin-induced ERK

activation via PKCq-dependent pathway [19] have also been

reported. The above descriptions clearly indicate that PKC-

dependent ERK1/2 activation is isoform-specific for cell

type and treatment as well.

The activation of specific PKC isoforms occurs in

response to a variety of apoptotic stimuli, suggesting that

this family of protein kinase may contribute to regulation of

the apoptotic pathway. The role of PKC in apoptosis, how-

ever, is controversial with data supporting either pro- [20,21]

or anti-apoptotic functions [22–24]. Studies have shown that

PKC can be activated transiently by variety of DNA-damag-

ing agents including ionizing radiation and PKC is involved

in radiosensitivity [25,26]. Our previous study also demon-

strated that ionizing radiation activated PKCa, y, q and ~
[25], however, isoform-specific sensitivities and its exact

mechanisms are not fully elucidated.

In this study, since it is very difficult to examine the

involvement of endogenous PKC isoforms in radiation-

induced cell death, we overexpressed PKC isoforms (PKCa,

y, q, and ~) in NIH3T3 cells and found that PKCq overex-

pressed cells had increased radiation-induced cell death,

which correlated with Ras–Raf-dependent ERK1/2 activa-

tion.

2. Materials and methods

2.1. Materials

PD98059 was purchased from Calbiochem (La Jolla, CA,

USA) and dissolved in DMSO, and control dishes were

treated with an equal amount of DMSO. Bisbenzimide

trihydrochloride (Heochst No. 33258) was from Sigma

Chemical Co. (St. Louis, MO, USA). Anti-PKCa, y, q, and
~ antibodies, anti-phopho Akt, anti-Akt, anti-HA, anti-His

and anti-Flag antibodies were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA, USA). Anti-MAPK, anti-

phospho MAPK (P202/Y204), anti-p38 MAPK, anti-phos-

pho-p38 MAPK, anti-JNK, anti-phospho-JNK, anti-MEK1/

2, and anti-phospho-MEK1/2 (Ser-217/221) polyclonal anti-

bodies were from New England BioLabs (Beverly, MA,

USA).

2.2. Plasmid construction

pHANE is a mammalian expression vector that contains a

CMV promoter, Kozak translation initiation sequence, ATG

start codon, N-terminal HA epitope tag, EcoRI cloning site,

and stop codon. It was generated into pcDNA3 (Invitrogen)

Fig. 1. Construction of dominant negative and constitutively active mutant of PKCa, y, q and ~ . Structures of PKC mutants. PKC-WT constructs contain a full-

length PKC open reading frame. Also shown are the psuedosubstrate sequences in the N-terminal regulatory domain and the essential lysine residue in the ATP

binding region of the catalytic domain. PKC-KR constructs encode a full-length PKC with a point mutation that abolishes the ATP binding ability. PKC-CAT

constructs encode a truncated protein in which the catalytic domain (CAT) of PKC is preserved, but the regulatory N-terminal domain is deleted.
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after digestion with BamH1 and EcoRI [27], and was used to

generate PKC mutants with an N-terminal HA tag. pHACE-

PKC-WT expression plasmids were generated by ligating

full-length open reading frames of different PKC isoforms at

the ATP binding into pHACE digested with EcoRI. PHACE-

PKC-KR expression plasmids were generated by ligating

full-length open reading frames of PKC isoforms with a

K!R point mutation at the ATP binding site into pHACE

digested with EcoRI. All the cDNA fragments of PKC

mutants were generated by PCR and were analyzed to

confirm their sequences with an automated DNA sequencer.

pcDNA3-Raf-K375M (Raf-KR) was constructed by subclon-

ing the BamH1 fragment of c-Raf-1 cDNAwith a K375!M

point mutation [27]. The pM2NRasN17 plasmid containing

the dominant-negative Ras (RasN17) under the control of a

metallothionein promoter as well as the empty vector were

used [28]. The eukaryotic expression vectors encoding His-

tagged rat ERK2-KR and human ERK1-KR under the control

of the cytomegalovirus promoter were produced by cloning

the inserts from the respective NpT7-5 clones [29] into

pCMV5 [30]. Plasmid pEGFP (Clontech, Palo Alto, CA,

USA) was used for co-transfection with PKCq-WT to detect

apoptosis.

2.3. Transfection

NIH3T3 cells were grown in Dulbecco’s modified

Eagle’s medium supplemented with 4 mM glutamine and

10% calf serum (DMEM). The cells were transiently trans-

fected with either empty vector as a control (pcDNA3) or

various expression vectors using lipofectamine (GIBCO

BRL, Gaithersburg, MD) by following the procedure rec-

ommended by the manufacturer. At 6 h after transfection,

the cells were fed with fresh medium and incubated over-

night. Four micrograms of each plasmid per 10-cm dish was

transfected.

2.4. Irradiation

Cells were plated in 3.5-, 6-, or 10-cm dishes and

incubated at 37 jC under humidified 5% CO2–95% air

in culture medium until 70–80% confluent. Cells were

then exposed to g-rays with 137Cs g-ray source (Atomic

Energy of Canada, Ltd., Canada) with dose rate of 3.81

Gy/min.

2.5. Detection of cell death

Two kinds of cell death detection methods were used.

(1) Cells were plated on glass slides and irradiated. After

indicated hours, cells were fixed in 70% ethanol, washed

with PBS, and were incubated with 1 Ag/ml bisbenzimide

trihydrochloride in PBS (Heochst no. 33258) for 30 min in

the dark. Specimens were viewed by fluorescence micro-

scopy using Olympus BX-40 microscope. At least 200

cells for each determination were scored. (2) The extent of

apoptosis was determined by flow cytometry, using either

PI (Sigma) staining of hypodiploid DNA or Annexin V

(PharMingen) double staining. The percentage of specific

apoptosis was calculated by subtracting the percentage of

spontaneous apoptosis of the relevant controls from the

total percentage of apoptosis.

2.6. Immunofluorescence microscopy

Cells were washed twice in PBS, fixed for 30 min in 2%

formaldehyde in phosphate buffer and washed in PBS.

Fig. 2. Transient overexpression of PKC wild-type. Western blot analysis of

transiently expressed PKC wild-type. An empty control vector (pcDNA3)

or expression vectors containing PKC wild-type or mutant sequences were

transiently transfected into NIH3T3 cells, and total cell lysates were

subjected to Western blot analysis with anti-HA (A) or-PKC antibodies (B).

NIH3T3 cells were transfected with the PKC wild-type expression vectors

and control vector pcDNA3, and cellular proteins were extracted by lysis

with PKC extraction buffer. HA-tagged PKC proteins were immunopreci-

pitated from 300 Ag of cell extracts by using 3 Ag of an anti-HA antibody

and 30 Al of protein G-Sepharose at 4 jC after 3-h incubation. Immune

complex kinase reactions were performed at 30 jC for 30 min in the

presence of 10 Ag of the GST-MARCKS substrate and 5 ACi of [g-32P]ATP.
The reaction products were then analyzed by SDS-PAGE and auto-

radiography. The apparent molecular mass of the recombinant GST-

MARCS protein was about 50 kDa.
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Specimens were viewed by fluorescence microscopy using

Olympus BX-40 microscope.

2.7. Polyacrylamide gel electrophoresis and Western blot

Cells were solubilized with lysis buffer [120 mM NaCl,

40 mM Tris (pH 8.0), 0.1% NP40] and boiled for 5 min,

and an equal amount of protein (40 Ag/well) was analyzed
on 7.5%–10% SDS-PAGE. After electrophoresis, proteins

were transferred onto a nitrocellulose membrane and pro-

cessed for immunoblotting. When antibodies against phos-

pho-specific peptides were used, blots were stripped by

washing three times with TBS-T [10 mM Tris (pH 7.5),

100 mM NaCl, and 0.1% Tween 20 (0.1%)] for 5 min each

at room temperature (RT), 30 min at 55 jC with stripping

buffer [62.5 mM Tris–HCl (pH 6.8), 2% SDS, and 100

mM 2-mercaptoethanol], and finally three times with TBS-

T at RT for 5 min each. The stripped blots were then

reprobed with corresponding non-phospho-specific antibod-

ies to ensure equal protein loading. For visualization of

antibody binding, the Amersham ECL detection system

was used.

2.8. PKC assay

NIH3T3 cells were transfected with the indicated

expression vectors or the control vector pcDNA3, and

cellular proteins were extracted by lysis in PKC extraction

buffer [50 mM HEPES (pH 7.5), 150 mM NaCl, 0.1%

Tween 20, 1 mM EDTA, 2.5 mM EGTA, and 10%

glycerol] that contained protease inhibitors (10 Ag aproti-

nin/ml, 10 Ag leupeptin/ml, and 0.1 mM phenylmethylsu-

fonyl fluoride) and phosphatase inhibitors [1 mM NaF, 0.1

mM Na3VO4, and 10 mM beta-glycerophosphate]. HA-

tagged PKC proteins were immunoprecipitated from 300

Ag of cell extracts with 3 Ag of the anti-HA antibody and

30 Al of protein G-Sepharose at 4 jC after 3-h incubation.

The immunoprecipitates were washed twice with PKC

Fig. 3. Radiation-induced cell death in wild-type PKC overexpressing cells. NIH3T3 cells were transfected with the PKC wild-type expression vectors and

control vector pcDNA3, and DNA fragmentation was measured by Hoechst 33258 staining 48 h after 5 Gy radiation as described in Materials and methods.

Error bar indicates meanF S.D. from three independent experiments. At least 200 cells for each determination were scored. Apoptosis was characterized by

chromatin condensation and fragmentation (A) or assessed by PI staining as well as Annexin V–FITC double staining. The results represent one of three

independent experiments (B). Plasmid pEGFP was used for contrasfection with PKCq-WT to detect DNA fragmentation. Cells were washed twice in PBS,

fixed for 30 min in 2% formaldehyde in phosphate buffer and washed in PBS. Cells were viewed by fluorescence microscopy (C).
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extraction buffer and then twice with PKC reaction buffer

[50 mM HEPES (pH 7.5), 10 mM MgCl2, 1 mM dithio-

threitol, 2.5 mM EGTA, 1 mM NaF, 0.1 mM Na3VO4, and

10 mM beta-glycerophosphate], and resuspended in 20 Al of
PKC reaction buffer. The kinase assay was initiated by adding

40 Al of PKC reaction buffer containing 10 Ag of glutathione-
S-transferase (GST)-myristoylated alanine-rich C kinase sub-

strate (MARCKS) and 5 ACi of [g-32P] ATP. The reactions

were carried out at 30 jC for 30 min, terminated by adding

SDS sample buffer, and the mixtures were boiled for 5 min.

The reaction products were analyzed by SDS-PAGE and

autoradiography. Recombinant GST-MARCKS proteins

were expressed in Escherichia coli BL21 (DE3)/LysS and

purified to homogeneity with glutathione-S-Sepharose beads

(Pharmacia) [27].

2.9. In vitro ERK1 and -2 kinase assays

Cells were washed twice with ice-cold PBS, were lysed

with 1% Triton-based lysis buffer (TLB) [containing 1%

Triton X-100, 50 mM Tris–HCl (pH 7.5), 40 mM h-
glycerophosphate, 100 mM NaCl, 50 mM NaF, 2 mM

EDTA, 1 mM sodium vanadate, 1 mM phenylmethylsul-

fonyl fluoride, aprotinin (1 Ag/ml), leupeptin (1 Ag/ml), and

20 mM p-nitropheyl phosphate], and the lysates were

incubated on ice for 30 min. The cell debris was removed

by centrifugation and protein concentrations were deter-

mined with Bio-Rad protein assay kit (Hercules, CA).

Monoclonal antibody against HA epitope was coupled to

protein G-Sepharose beads by adding 20 Ag of antibody to

1 ml of 50:50 slurry of protein G-Sepharose for 30 min at 4

jC; 40 Al of the antibody–protein G-Sepharose complex

was added to 300 Ag of cellular lysate protein and the

mixture was incubated for 2 h at 4 jC. Immune complexes

were then washed three times with TLB and twice in kinase

buffer [1� kinase buffer contained 25 mM HEPES (pH

7.4), 10 mM MgCl2, 1 mM MnCl2, 1 mM dithiothreitol,

and 0.2 mM sodium vanadate]. The final pellet resus-

pended in 30 Al of kinase buffer was incubated with 50

AM ATP, 5 ACi of [g-32P]-ATP, and 5 Ag of myelin basic

protein (MBP) for 20 min at 30 jC. Reactions were

stopped by the addition of 10 Al of 6� concentrated

sample buffer and boiling for 5 min. Beads were pelleted

by centrifugation and supernatants were loaded onto 10%

acrylamide separating gel. Proteins were transferred to

nitrocellulose and subjected to autoradiography.

3. Results

3.1. Generation of cells overexpressing specific PKC

isoforms (a, d, e, and f)

Since it is extremely difficult to examine the involvement

of endogenous PKC isoforms in radiation-induced cell

death, we overexpressed each PKC isoform (a, y, q, and

~) in NIH3T3 cells whose signal transduction has been well

characterized, and Western blot analysis revealed that the

NIH3T3 cells expressed at least four PKC isoforms, namely,

PKCa, -y, -q, and -~ (data not shown). Therefore, the

respective cDNAs were inserted into the mammalian

expression vector pHACE, and PKC-WT constructs con-

tained the full-length open reading frames of PKCa, -y,-q, or
-~ (Fig. 1). Subsequently, the expression vectors for PKC-

WT were transfected into NIH3T3 cells to verify that they

expressed the predicted protein (HA), and the constructs

were found to express the corresponding proteins with

expected sizes at comparable levels (Fig. 2A). Whenever

expressions of PKC isoform protein were detected by West-

ern blot, increased level of each PKC isoform was detected

(Fig. 2B). In addition, increased PKC kinase activity with

GST-MARCKS as a substrate was also found in each PKC

isoform of overexpressed cells (Fig. 2C), suggesting that

activation levels of each PKC isoform were almost the

same.

3.2. PKCe overexpression increased radiation-induced cell

death

To further elucidate closely the inter relationship between

each PKC isoform and radiation sensitivity, cell death was

examined using Hoechst 33258 staining. As shown in Fig.

Fig. 4. MAP kinase phosphorylation of wild-type PKC overexpressing

cells. NIH3T3 cells were transfected with the PKC wild-type expression

vectors and control vector pcDNA3, and protein extracts were prepared,

separated by SDS-PAGE, and analyzed by Western blot analysis.
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3A, even though overexpression of any of all the PKC

isoforms increased the radiation-induced cell death, PKCq-
WT transfectant cells showed the most dramatic increase

(21.9% increase from the control cells) among the isoforms.

When we detected apoptosis using Annexin V–FITC kit,

similar results were obtained (Fig. 3B). When we co-trans-

fected with pEGFP and PKCq-WT plasmids, PKCq-WT

transfected cells showed increased apoptosis in confocal

microscopy, when compared to pEGFP plasmid alone trans-

fected cells (Fig. 3C). From the results, PKCq was mostly

responsible for the cell death.

3.3. PKCe overexpression increased ERK1/2 activation

without altering activation of other MAPkinases such as

p38 MAPK and JNK

To elucidate the signaling mechanisms of PKCq-medi-

ated apoptosis, activation of MAP kinases, ERK1/2, p38

MAPK and JNK, was examined. Among the isoforms,

only PKCq-WT overexpressed cells were found to have

increased phosphorylation of ERK1/2 proteins, while p38

MAPK or JNK were not activated (Fig. 4). Expression of

phospho-MEK1/2, an upstream molecule of ERK1/2, was

Fig. 5. PKCq overexpression increased radiation-induced cell death through ERK1/2 activation. (A) NIH3T3 cells were transfected with PKCq sequences

(PKCq-WT, PKCq-CAT, or PKCq-KR) vectors and control vector pcDNA3, and cellular proteins were extracted by cell lysis in PKC extraction buffer. HA-

tagged PKC proteins were immunoprecipitated from 300 Ag of cell extracts by using 3 Ag of an anti-HA antibody and 30 Al of protein G-Sepharose at 4 jC,
after a 3-h incubation. Immune complex kinase reactions were performed at 30 jC for 30 min in the presence of 10 Ag of the GST-MARCKS substrate and 5

ACi of [g-32P]-ATP. The reaction products were then analyzed by SDS-PAGE and autoradiography. The apparent molecular mass of the recombinant GST-

MARCS protein was about 50 kDa. (B) NIH3T3 cells were transfected with PKCq sequences (PKCq-WT, PKCq-CAT, or PKCq-KR) vectors and control vector
pcDNA3, and DNA fragmentation was measured by Hoechst 33258 staining 48 h after 5 Gy radiation, as described in Materials and methods. Error bar

indicates meanF S.D. from three independent experiments (upper) or assessed by PI staining as well as Annexin V–FITC double staining. The results

represent one of three independent experiments (lower). (C) After 5-Gy radiation, protein extracts (60 Ag) of growing vector control and various PKCq
sequences (PKCq-WT, PKCq-CAT, or PKCq-KR) overexpressing cells were prepared, separated by SDS-PAGE, and analyzed by Western blot.
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also upregulated by PKCq-WT overexpression, suggesting

that ERK1/2 might be a major signal target of overex-

pressed PKCq.

3.4. Transfection of dominant negative PKCe (PKCe-KR)
inhibited PKCe-mediated ERK1/2 activation and radiation-

induced cell death

Whether PKCq-mediated ERK1/2 activation was asso-

ciated with the radiation-induced cell death, PKCq-KR
whose constructs contained full-length open reading frame

with a K!R point mutation in the ATP binding site and

PKCq-CAT whose constructs contained only the catalytic

domains with the inhibitory N-terminal domains deleted

(Fig. 1) were transfected to NIH3T3 cells (Fig. 5A). As

shown in Fig. 5B, PKCq-CAT transfection showed more

increased induction of cell death than that of PKCq-WT

transfection, when detected by morphology and flow

cytometry using Annexin V staining. In addition, when

dominant negative PKCq, PKCq-KR, was co-transfected

with PKCq-WT, induction ratio of cell death decreased to

the control level (Fig. 5B), suggesting that PKCq was

responsible for ERK1/2 activation as well as for the

radiation-induced cell death. In addition, ERK1/2 activation

was increased when PKCq-CAT was transfected, whereas

co-transfection with PKCq-KR disappeared these phenom-

ena (Fig. 5C).

3.5. Treatment of PD98059, MEK inhibitor, reduced

radiation-induced cell death in the PKCe overexpressed

cells

Whether PKCq-mediated ERK1/2 activation was respon-

sible for the radiation-induced cell death, radiation-induced

cell death in the PKCq-WT and PKCq-CAT overexpressed

cells was examined using PD98059, blocker of ERK1/2

phosphorylation. As shown in Fig. 6A and B, ERK1/2

phosphorylation and increased induction of radiation-

induced cell death by PKCq-WTand PKCq-CAT overexpres-

sion were inhibited by pretreatment with PD98059 for 30

min, suggesting that PKCq-mediated ERK1/2 activation was

the major factor in PKCq-mediated radiation-induced cell

death.

3.6. Cotransfection of dominant negative ERK1/2 in the

PKCe overexpressed cells blocked radiation-induced cell

death

To elucidate the relationship between the level of ERK1/

2 and PKCq-mediated cell death, interfering mutants of the

MAP kinase ERK1 (ERK1-KR) or ERK2 (ERK2-KR), in

which a lysine residue in the ATP binding site was mutated

to arginine [31], were coexpressed in PKCq-WT or PKCq-
CAT (Fig. 7A), and kinase activity of respective ERK1 or

ERK2 was found to be also inhibited (data not shown).

Moreover, radiation-induced cell death was repressed by

Fig. 6. PD98059 pretreatment inhibited PKCq-mediated radiation-induced

cell death and ERK1/2 activation. (A) NIH3T3 cells were transfected with

PKCq sequences (PKCq-WT, or PKCq-CAT) vectors and control vector

pcDNA3 with or without pretreatment with 50 AM PD98059, and proteins

were prepared, separated by SDS-PAGE, and analyzed by Western blot. (B)

NIH3T3 cells were transfected with PKCq sequences (PKCq-WT, PKCq-
CAT, or PKCq-KR) vectors and control vector pcDNA3, and DNA

fragmentations were measured by Hoechst 33258 staining 48 h after 5-Gy

radiation with or without pretreatment with 50 AM PD98059, as described

in Materials and methods. Error bar indicates meanF S.D. from three

independent experiments (upper) or assessed by PI staining as well as

Annexin V–FITC double staining. The results represent one of three

independent experiments (lower).
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both ERK1-KR and ERK2-KR co-transfection (Fig. 7B),

suggesting that ERK1/2 pathway was essential for PKCq-
mediated radiation-induced cell death.

3.7. PKCe-mediated ERK1/2 activation was Ras- and Raf-

dependent

To elucidate upstream molecules of PKCq, Ras- or Raf-
dominant negative mutants were used. When co-transfected

PKCq-WT with Raf-dominant and negative mutants (Raf-

KR), PKCq-mediated radiation-induced cell death and

ERK1/2 phosphorylation were abolished (Fig. 8A). In

addition, when RasN17, Ras-dominant negative mutant,

was co-transfected to the PKCq-WT overexpressed cells,

PKCq-mediated radiation-induced cell death and ERK1/2

and MEK1/2 phosphorylations were also abolished (Fig.

8B), thus demonstrating that PKCq-mediated ERK1/2 acti-

vation and radiation-induced cell death were dependent on

Ras and Raf pathways.

4. Discussion

As described earlier in Introduction, remarkable progress

has recently been made in elucidating the details of the

signal transduction pathways. There are numerous indirect

evidences to indicate that PKC plays a role in this pathway;

however, it is not yet known with certainty which isoforms

of PKC are involved. Indeed, studies on the specific cellular

effects of individual isoforms have in general been ham-

pered by several factors, including the facts that individual

cells often express several isoforms of PKC, that the PKC

Fig. 7. ERK1/2 dominant-negative mutant blocked PKCq-mediated radiation-induced cell death. (A) NIH3T3 cells were transfected with PKCq sequences

(PKCq-WT, or PKCq-CAT) vectors and control vector pcDNA3 with or without pCMV-ERK1-KR or pCMV-ERK2-KR plasmid expressing dominant negative

kinases, and proteins were prepared, separated by SDS-PAGE, and analyzed by Western blot with anti-histidine antibody. (B) NIH3T3 cells were transfected

with PKCq sequences (PKCq-WT, or PKCq-CAT) vectors with or without pCMV-ERK1-KR or pCMV-ERK2-KR plasmid and control vector pcDNA3, and

DNA fragmentations were measured by Hoechst 33258 staining 48 h after 5-Gy radiation, as described in Materials and methods. Error bar indicates

meanF S.D. from three independent experiments (upper) or assessed by PI staining as well as Annexin V–FITC double staining. The results represent one of

three independent experiments (lower).
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activator TPA can activate all of the PKC isoforms except

PKC~ and PKCL, and that PKC isoform specific inhibitors

are not yet available.

Recently, accumulating evidence indicates that activation

of ERK requires selective activation of a specific PKC

isoform, and both Ras-dependent and Ras-independent

mechanism of activation have been described [1]. PKCy
activated ERK pathway by treatment of growth factors [31].

Similarly, PKC~ cooperates with PI-3 kinase to mediate

Ras-independent ERK activation [32] and mediates platelet-

derived growth factor-induced ERK activation by a Raf-1

and phospholipase C-dependent cascade [33]. In addition,

PKC~ has been implicated in the activation of ERK and a

dominant-negative mutant of PKC~ severely impairs acti-

vation of ERK kinase (MEK) [34].

The major finding in our present study was that when

overexpressed in NIH3T3 cells, PKCq was the major com-

ponent of a radiation-sensitive signal transduction pathway

that led to the activation of ERK1/2. Furthermore, PKCq was
highly specific for this pathway, since PKCa, y, and ~ were
not required for ERK1/2 activation (Fig. 4); PKCq-CAT
activated ERK1/2 more than PKC-WT, while co-transfection

of mutant PKCq, PKCq-KR, with PKCq-WT did less, sug-

gesting that PKCq regulated ERK1/2 activation without

altering activation of other MAPKs such as p38-MAPK

and JNK. When the upstream molecule of ERK1/2, MEK1/

2, was examined, a similar pattern was also observed.

Co-transfection of dominant negative construction of Ras

or Raf, which are the upstream molecules of ERK1/2,

revealed that PKCq-mediated ERK1/2 activation was

Ras–Raf-dependent. Evidence indicates that PKCq can

interact directly with Raf-1 to activate ERK1/2 [35], and

that expression of active PKCq results in increased Raf-1

activity even in the context of dominant negative Ras [12],

suggesting PKCq being able to directly activate Raf in vitro.

As discussed above, PKCq-mediated ERK1/2 activation

was responsible for the radiation-induced cell death (Fig. 3);

PKCq-CAT induced more cell death, while mutant PKCq,
PKCq-KR, abolished this phenomena, indicating that PKCq
was the major component of radiation-induced cell death.

Moreover, treatment of the PKCq-WT and PKCq-CAT over-

expressed cells with ERK1/2 inhibitor, PD98059, and co-

transfection of ERK1 or ERK2 dominant negative mutants

(ERK1-KR or ERK2-KR) revealed that ERK1/2 pathways

were critical in radiation-induced cell death (Fig. 6). These

observations were somewhat surprising, since ERK pathway

is known to be critical in the control of cellular growth and

cell survival responses to mitogenic signals in many differ-

ent cell systems, i.e. signals including those received by

tyrosine kinase, G protein-coupled and cytokine receptors

[30]. Many studies support a general view that activation of

the ERK pathway delivers a survival signal that counteracts

proapoptotic effects associated with JNK and p38 activation

[4]. However, requirement for ERK in mediating cisplatin-

induced apoptosis of human cervical carcinoma HeLa cells

and ovarian cell lines [2,3] has also been demonstrated.

Moreover, persistent activation of ERK1/2 contributes to

glutamate-induced oxidative toxicity [5]. In agreement with

the above observations, our data also suggested that PKCq-
mediated ERK1/2 activation was a positive regulator of

radiation-induced cell death.

Fig. 8. PKCq-mediated radiation-induced cell death and ERK1/2 activation

was Ras- and Raf-dependent. (A) NIH3T3 cells were transfected with

PKCq sequences (PKCq-WT, or PKCq-CAT) vectors and control vector

pcDNA3 with or without Ras-N17 or Raf-KR plasmid expressing dominant

negative kinases, and proteins were prepared, separated by SDS-PAGE, and

analyzed by Western blot. (B) NIH3T3 cells were transfected with PKCq
sequence (PKCq-WT or PKCq-CAT) vectors and control vector pcDNA3

with or without Ras-N17 or Raf-KR plasmid expressing dominant negative

kinases, and DNA fragmentations were measured by Hoechst 33258

staining 48 h after 5-Gy radiation, as described in Materials and methods.

Error bar indicates meanF S.D. from three independent experiments (left)

or assessed by PI staining as well as Annexin V–FITC double staining. The

results represent one of three independent experiments (right).
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In the present study, we generated mammalian expres-

sion vectors that could be used to transiently overexpress

either wild-type, constitutively active mutant, or dominant

negative mutants of PKC isoforms and these constructs

were used for transient transfection assays to discern PKC

isoforms specific in radiation-induced cell death. We found

that PKCq was the major component of radiation-induced

cell death when overexpressed to the same extent as other

PKC isoforms. Compared with other isoforms, the amount

of PKCq in NIH3T3 cells is, however, generally small.

Although depending on the stimuli and cell types, over-

expression of PKCq displays oncogenic transformation

[36,37] and PKCq transgenic mice induce highly malig-

nant/metastasis squamous cell carcinoma of skin cancer

[38]. Therefore, our data suggest that cancer cells with

activated or overexpressed PKCq are radiosensitive, and we

are in the process of extending our study to other cell

systems such as human tumor cell lines.
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