123 research outputs found

    Dormancy Phenotype Displayed by Extracellular Mycobacterium tuberculosis within Artificial Granulomas in Mice

    Get PDF
    Mycobacterium tuberculosis residing within pulmonary granulomas and cavities represents an important reservoir of persistent organisms during human latent tuberculosis infection. We present a novel in vivo model of tuberculosis involving the encapsulation of bacilli in semidiffusible hollow fibers that are implanted subcutaneously into mice. Granulomatous lesions develop around these hollow fibers, and in this microenvironment, the organisms demonstrate an altered physiologic state characterized by stationary-state colony-forming unit counts and decreased metabolic activity. Moreover, these organisms show an antimicrobial susceptibility pattern similar to persistent bacilli in current models of tuberculosis chemotherapy in that they are more susceptible to the sterilizing drug, rifampin, than to the bactericidal drug isoniazid. We used this model of extracellular persistence within host granulomas to study both gene expression patterns and mutant survival patterns. Our results demonstrate induction of dosR (Rv3133c) and 20 other members of the DosR regulon believed to mediate the transition into dormancy, and that relMtb is required for Mycobacterium tuberculosis survival during extracellular persistence within host granulomas. Interestingly, the dormancy phenotype of extracellular M. tuberculosis within host granulomas appears to be immune mediated and interferon-γ dependent

    Daily Dosing of Rifapentine Cures Tuberculosis in Three Months or Less in the Murine Model

    Get PDF
    Eric Nuermberger and colleagues found that after two months of treatment, mice with lung cultures positive for tuberculosis that received daily doses of rifapentine- and moxifloxacin-containing regimens converted to negative lung cultures. This finding could make possible the development of shorter treatment regimens for humans

    Activities of Rifampin, Rifapentine and Clarithromycin Alone and in Combination against Mycobacterium ulcerans Disease in Mice

    Get PDF
    Buruli ulcer (BU) is found throughout the world but is particularly prevalent in West Africa. Until 2004, treatment for this disfiguring disease was surgical excision followed by skin grafting, procedures often requiring months of hospitalization. More recently, an 8-week regimen of oral rifampin and streptomycin administered by injection has become the standard of care recommended by the World Health Organization. However, daily injections require sterile needles and syringes to prevent spread of blood borne pathogens and streptomycin has potentially serious side effects, most notably hearing loss. We tested an entirely oral regimen, substituting the long acting rifapentine for rifampin and clarithromycin for streptomycin. We also evaluated each drug separately. We found that rifapentine alone is as good as rifampin plus streptomycin, but the simultaneous addition of effective clarithromycin doses, at least in the mouse, reduces the activity of both rifampin and rifapentine, making it difficult to assess the efficacy of the oral regimens in the model. Studies of serum drug concentrations indicated that separating treatment times by one hour or reducing the clarithromycin dose to one active in humans should overcome this issue in experimental and clinical BU treatment, respectively

    Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis

    Get PDF
    The novel ATP synthase inhibitor bedaquiline recently received accelerated approval for treatment of multidrug-resistant tuberculosis and is currently being studied as a component of novel treatment-shortening regimens for drug-susceptible and multidrug-resistant tuberculosis. In a limited number of bedaquiline-treated patients reported to date, ≥4-fold upward shifts in bedaquiline MIC during treatment have been attributed to non-target-based mutations in Rv0678 that putatively increase bedaquiline efflux through the MmpS5-MmpL5 pump. These mutations also confer low-level clofazimine resistance, presumably by a similar mechanism. Here, we describe a new non-target-based determinant of low-level bedaquiline and clofazimine cross-resistance in Mycobacterium tuberculosis: loss-of-function mutations in pepQ (Rv2535c), which corresponds to a putative Xaa-Pro aminopeptidase. pepQ mutants were selected in mice by treatment with clinically relevant doses of bedaquiline, with or without clofazimine, and were shown to have bedaquiline and clofazimine MICs 4 times higher than those for the parental H37Rv strain. Coincubation with efflux inhibitors verapamil and reserpine lowered bedaquiline MICs against both mutant and parent strains to a level below the MIC against H37Rv in the absence of efflux pump inhibitors. However, quantitative PCR (qPCR) revealed no significant differences in expression of Rv0678, mmpS5, or mmpL5 between mutant and parent strains. Complementation of a pepQ mutant with the wild-type gene restored susceptibility, indicating that loss of PepQ function is sufficient for reduced susceptibility both in vitro and in mice. Although the mechanism by which mutations in pepQ confer bedaquiline and clofazimine cross-resistance remains unclear, these results may have clinical implications and warrant further evaluation of clinical isolates with reduced susceptibility to either drug for mutations in this gene

    Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease.

    Get PDF
    Mycobacterium ulcerans infection causes a neglected tropical disease known as Buruli ulcer that is now found in poor rural areas of West Africa in numbers that sometimes exceed those reported for another significant mycobacterial disease, leprosy, caused by M. leprae. Unique among mycobacterial diseases, M. ulcerans produces a plasmid-encoded toxin called mycolactone (ML), which is the principal virulence factor and destroys fat cells in subcutaneous tissue. Disease is typically first manifested by the appearance of a nodule that eventually ulcerates and the lesions may continue to spread over limbs or occasionally the trunk. The current standard treatment is 8 weeks of daily rifampin and injections of streptomycin (RS). The treatment kills bacilli and wounds gradually heal. Whether RS treatment actually stops mycolactone production before killing bacilli has been suggested by histopathological analyses of patient lesions. Using a mouse footpad model of M. ulcerans infection where the time of infection and development of lesions can be followed in a controlled manner before and after antibiotic treatment, we have evaluated the progress of infection by assessing bacterial numbers, mycolactone production, the immune response, and lesion histopathology at regular intervals after infection and after antibiotic therapy. We found that RS treatment rapidly reduced gross lesions, bacterial numbers, and ML production as assessed by cytotoxicity assays and mass spectrometric analysis. Histopathological analysis revealed that RS treatment maintained the association of the bacilli with (or within) host cells where they were destroyed whereas lack of treatment resulted in extracellular infection, destruction of host cells, and ultimately lesion ulceration. We propose that RS treatment promotes healing in the host by blocking mycolactone production, which favors the survival of host cells, and by killing M. ulcerans bacilli

    The Impact of Mouse Passaging of Mycobacterium tuberculosis Strains prior to Virulence Testing in the Mouse and Guinea Pig Aerosol Models

    Get PDF
    It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made

    Efficient rate-power allocation for OFDM in a realistic fading environment

    Get PDF
    The implementation of practical adaptive resource allocation scheme remains a key criterion to be satisfied for realising spectrally efficient multitone wireless communications. The ever-increasing demand for spectrally efficient broadband wireless transmission technologies has spurred intensive research leading towards the implementation of adaptive OFDM and adaptive MIMO systems. Efforts in this direction have been frustrated however by the lack of a clear and accurate description of the fading behaviour typically encountered in the broadband wireless transmission environment. This has been partially been overcome by the use of mathematical modelling which captures certain large-scale characteristics of the channel and facilitates theoretical research. The “average” channel parameters gleaned from these processes is typically then used to inform the design and configuration of wireless networking equipment after the broad application of generous safety margins. The resulting solu�tion is therefore quite robust to certain transient channel quality degradation yet the generous safety tolerances render it unable to exploit other transient transmission quality improvements We seek to overcome the problems associated with this ap�proach by applying a theoretically sound novel adaptive resource allocation framework to actual broadband wireless channel development data. The allocation framework is derived from the optimal OFDM allocation scheme for a known channel [1]: the channel development data is obtained from actual measurement of a broadband wireless mobile environment [2]. Prediction tech�niques are employed to overcome the time lag between channel assessment and symbol transmission. We present the details of the predictive resource allocation scheme used and include a broad characterisation of the transmission environment in terms of the time-varying fading processes observed. We provide some results of the application of this scheme as typical performance levels that may be achieved in an actual transmission environment

    An enhanced regimen as post-exposure chemoprophylaxis for leprosy:PEP+

    Get PDF
    The ongoing transmission of Mycobacterium (M.) leprae reflected in a very slow decline in leprosy incidence, forces us to be innovative and conduct cutting-edge research. Single dose rifampicin (SDR) as post-exposure prophylaxis (PEP) for contacts of leprosy patients, reduces their risk to develop leprosy by 60%. This is a promising new preventive measure that can be integrated into routine leprosy control programmes, as is being demonstrated in the Leprosy Post-Exposure Programme that is currently ongoing in eight countries.The limited (60%) effectiveness of SDR is likely due to the fact that some contacts have a preclinical infection beyond the early stages for which SDR is not sufficient to prevent the development of clinical signs and symptoms of leprosy. An enhanced regimen, more potent against a higher load of leprosy bacteria, would increase the effectiveness of this preventive measure significantly.The Netherlands Leprosy Relief (NLR) is developing a multi-country study aiming to show that breaking the chain of transmission of M. leprae is possible, evidenced by a dramatic reduction in incidence. In this study the assessment of the effectiveness of an enhanced prophylactic regimen for leprosy is an important component. To define the so called PEP++ regimen for this intervention study, NLR convened an Expert Meeting that was attended by clinical leprologists, public health experts, pharmacologists, dermatologists and microbiologists.The Expert Meeting advised on combinations of available drugs, with known efficacy against leprosy, as well as on the duration of the intake, aiming at a risk reduction of 80-90%. To come to a conclusion the Expert Meeting considered the bactericidal, sterilising and bacteriostatic activity of the potential drugs. The criteria used to determine an optimal enhanced regimen were: effectiveness, safety, acceptability, availability, affordability, feasibility and not inducing drug resistance.The Expert Meeting concluded that the enhanced regimen for the PEP++ study should comprise three standard doses of rifampicin 600 mg (weight adjusted when given to children) plus moxifloxacin 400 mg given at four-weekly intervals. For children and for adults with contraindications for moxifloxacin, moxifloxacin should be replaced by clarithromycin 300 mg (weight adjusted)

    Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal.

    Get PDF
    CAPRISA, 2015.Abstract available in pdf
    corecore