24 research outputs found
VirB type IV secretory system does not contribute to Brucella suis' avoidance of human dendritic cell maturation.
International audienceDendritic cells (DCs), which are critical components of adaptive immunity, are highly susceptible to infection with the intracellular bacteria Brucella. Infection with living Brucella prevents infected human DCs from engaging in maturation processes, thus impairing their capacity to present antigens to na? T cells and to secrete IL-12. Recently, we have established that several attenuated mutants of Brucella (rough, omp25, bvrR) are unable to control DCs maturation and thus effectively stimulate na? T cells, which could be the origin of the protective immunity elicited by these mutants in vivo. In this study, we investigate the interactions of a VirB-defective Brucella mutant with human DCs to determine whether its attenuation could be attributed to the induction of an adaptive immune response. We show here that in contrast to previously studied strains and similar to wild-type strains, this virB mutant was unable to trigger significant DC maturation. Together with recently published data describing infection with virB mutants in vivo, these results suggest that Brucella T4SS VirB is not involved in the control of DC maturation and does not interfere with the establishment of a T-helper type 1 adaptive immune response
Brucella suis Prevents Human Dendritic Cell Maturation and Antigen Presentation through Regulation of Tumor Necrosis Factor Alpha Secretion▿
Brucella is a facultative intracellular pathogen and the etiological agent of brucellosis. In some cases, human brucellosis results in a persistent infection that may reactivate years after the initial exposure. The mechanisms by which the parasite evades clearance by the immune response to chronically infect its host are unknown. We recently demonstrated that dendritic cells (DCs), which are critical components of adaptive immunity, are highly susceptible to Brucella infection and are a preferential niche for the development of the bacteria. Here, we report that in contrast to several intracellular bacteria, Brucella prevented the infected DCs from engaging in their maturation process and impaired their capacities to present antigen to naïve T cells and to secrete interleukin-12. Moreover, Brucella-infected DCs failed to release tumor necrosis factor alpha (TNF-α), a defect involving the bacterial protein Omp25. Exogenous TNF-α addition to Brucella-infected DCs restored cell maturation and allowed them to present antigens. Two avirulent mutants of B. suis, B. suis bvrR and B. suis omp25 mutants, which do not express the Omp25 protein, triggered TNF-α production upon DC invasion. Cells infected with these mutants subsequently matured and acquired the ability to present antigens, two properties which were dramatically impaired by addition of anti-TNF-α antibodies. In light of these data, we propose a model in which virulent Brucella alters the maturation and functions of DCs through Omp25-dependent control of TNF-α production. This model defines a specific evasion strategy of the bacteria by which they can escape the immune response to chronically infect their host
Interaction of Brucella suis and Brucella abortus Rough Strains with Human Dendritic Cells▿
Brucella is a facultative intracellular pathogen of various mammals and the etiological agent of brucellosis. We recently demonstrated that dendritic cells (DCs), which are critical components of adaptive immunity, are highly susceptible to Brucella infection. Furthermore, Brucella prevented the infected DCs from engaging in maturation processes and impaired their capacity to present antigen to naive T cells and to secrete interleukin-12 (IL-12). The lipopolysaccharide (LPS) phenotype is largely associated with the virulence of Brucella. Depending on whether they express the O-side chain of LPS or not, the bacteria display a smooth or rough phenotype. Rough Brucella mutants are attenuated and induce a potent protective T-cell-dependent immune response. Due to the essential role of DCs in the initiation of T-cell-dependent adaptive immune responses, it seemed pertinent to study the interaction between rough Brucella strains and human DCs. In the present paper, we report that, in contrast to smooth bacteria, infection of DCs with rough mutants of Brucella suis or Brucella abortus leads to both phenotypic and functional maturation of infected cells. Rough mutant-infected DCs then acquire the capacity to produce IL-12 and to stimulate naive CD4+ T lymphocytes. Experiments with rough and smooth purified LPS of Brucella supported the hypothesis of an indirect involvement of the O-side chain. These results provide new data concerning the role of LPS in Brucella virulence strategy and illuminate phenomena contributing to immune protection conferred by rough vaccine strains
High Susceptibility of Human Dendritic Cells to Invasion by the Intracellular Pathogens Brucella suis, B. abortus, and B. melitensis
Bacteria from the Brucella genus are able to survive and proliferate within macrophages. Because they are phylogenetically closely related to macrophages, myeloid dendritic cells (DCs) constitute potential targets for Brucella bacteria. Here we report that DCs display a great susceptibility to Brucella infection. Therefore, DCs might serve as a reservoir and be important for the development of Brucella bacteria within their host
NnrA Is Required for Full Virulence and Regulates Several Brucella melitensis Denitrification Genes
We identified two regulators of denitrification genes in Brucella melitensis 16M: NarR, which regulates the nitrate reductase (nar) operon, and NnrA, which is involved in the expression of the last three reductases of the denitrification pathway (nirK, norB, and nosZ). NnrA is required for virulence in mice and for intracellular resistance to nitric oxide