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1. Introduction 

The adenosine-generating enzyme S’nucleotidase 
is localized on the external surface of the plasma 

membrane of many cells [ 11, including lymphocytes 

[2,3]. This enzyme is a concanavalin A (con A) 

receptor [4] and is inhibited by the lectin binding 
[3,5]. Although little is known about its function, 
5’nucleotidase plays a critical role in lymphocyte 

adenosine metabolism; it is involved in adenosine up- 
take from 5’-AMP [6,7] and regulates intracellular 
cyclic AMP level [8] through membrane adenosine 
receptor sites [9]. As adenosine appears to exert a 
negative control on lymphocyte proliferation 
[ 10,l l] the distribution of 5’nucleotidase activity 
among lymphocyte subpopulations is a very im- 
portant problem. Non-uniform distribution of 5’- 
nucleotidase among lymphoid tissues has been 
described [ 12- 171 but these results are sometimes 
contradictory; moreover completely different 
distributions are reported for different animal species. 

However low 5’nucleotidase levels are un- 
ambiguously found in lymphocytes from patients 

with chronic lymphocytic leukemia (CLL) ([ 17-201 
and ourselves) or hypogammaglobulinemia [2 1,221 
and in cord blood lymphocytes [22,23]. As CLL cells 

are thought to be arrested at an early stage of develop- 
ment [24] and as cord blood cells might also be 

immature [25], it was hypothesized that the 5’-nu- 

cleotidase deficiency in hypogammaglobulinemic 
patients may reflect a stage of maturation arrest in T 
and B lymphocytes [23]. 

As others [13,14,16] we found that 5’-nucleotid- 
ase activity in thymocytes is 6-lo-fold lower than in 
splenocytes. We checked the hypothesis that this low 
activity may reflect the fact that the major thymo- 
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cyte subpopulation (85-95%) which is hydro- 
cortisone-sensitive and immature displays very low 

5’nucleotidase activity. 

2. Materials and methods 

Thymocytes were obtained from 4-7-week-old 

male mice (C57/BL6, DBA2, C3H/eb, CB-20 or 
Swiss) killed by cervical luxation. Thymuses were 
removed, minced in Hank’s salt and passed through a 
fine stainless steel mesh to give a single cell suspen- 

sion (1- 1.5 X 10s cells/thymus); when necessary 
erythrocytes were selectively kilIed by 0.14 M 

ammonium chloride. Cell viability was 95-98%. 
Hydrocortisone-resistant thymocytes were obtained 

by the same procedure 48 h after intraperitoneal 
injection of 2.5 mg hydrocortisone acetate. Spleno- 

cytes were prepared as in [7]. 
Mature and immature thymocyte populations were 

isolated by agglutination with peanut agglutinin 
(PNA) as in [26]. Thymocytes, 2 X lo8 in 0.25 ml 

PBS, were incubated with 0.25 mg PNA in 0.25 ml 

PBS for 10 min at 25°C; the mixture was then layer- 
ed on 8 ml FCS 3% in PBS. After 30 min sedimenta- 
tion (1 X g) agglutinated (immature) cells (bottom 
layer) were removed from non-agglutinated (mature) 

cells (top layer), dissociated into single cells by 
10 min incubation at 37°C with 5 ml 0.2 M D-galac- 

tose in PBS, washed twice with 5 ml 0.2 M D- 
galactose and twice with PBS. Unagglutinated cells 
(5-l% of total thymocytes) received the same 
treatment. Viability of both populations was 95%. 

5’-Nucleotidase activity was determined using 
5’-[32P]AMP as substrate. Cells (2.5-5 X 106) were 

incubated 30 min at 37°C in 250 ~1 199 Hepes 
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medium with 0.2 mM 5’-[32P]AMP. The reaction was 

stopped with 150 /.d 0.1 N HCl and 32Pi was 
determined as in [3]. The contribution of non 

specific phosphatases to 5’-AMP hydrolysis was 
negligible [3] and increases in Pi up to 0.1 M had no 

effect on the enzyme activity [ 1,8]. 5’-Nucleotidase 

activity was expressed as nmol Pi . h-’ . mg protein-‘. 
The amount of proteins corresponding to 2.5-5 X lo6 

cells was determined by Lowry’s method. 

Thymidine uptakes induced by PHA Difco 

(7 pi/ml) or con A Pharmacia (5 &ml) were 
determined as in [ 111. Cells 250 @(3 X lo/ml) were 

cultured in RPM1 medium supplemented with 15% 

fetal calf serum for 60 h at 37°C under an air-CO2 

(95:5) atmosphere. For the last 5 h the cells were 

pulsed with [3H] thymidine and harvested as in [ 111. 

3. Results 

The separation of mouse thymocytes into two 

subpopulations (mature and immature) was done by 
the method in [26] for mouse thymocytes and 
recently applied to human thymocytes [27]. This 
method is based on the observation that immature 
thymocytes bind PNA while mature cells do not. 
Agglutinated cells (80-90% of total thymocytes) 
were dissociated into single cells by incubation with 
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D-galactose which bind specifically PNA; this popula- 
tion was unambiguously characterized as immature 
and hydrocortisone-sensitive, while non-agglutinated 

cells were found identical to mature hydrocortisone- 
resistant thymocytes [26,27]. Table 1 confirms these 

characterizations; it reports the stimulation of 
unseparated thymocytes and thymocyte subpopula- 

tions by PHA or con A. PNA’ (agglutinated) lympho- 

cytes were not stimulated by PHA, while PNA- 

lymphocytes and thymocytes from hydrocortisone- 

treated mice were highly stimulated. 

Table 2 shows the 5’-nucleotidase activity of 

unseparated, PNA’ and PNA- thymocytes. Ten 

experiments were performed with Swiss mouse thy- 

mocytes and one with each of the other mouse 

strains. The percentage of PNA- thymocytes was 
5-15%; the 5’nucleotidase activity of this subpopu- 
lation was 3-5-fold higher than that of unseparated 

thymocytes. PNA’ thymocytes accounted for 
80-90% of total thymocytes and displayed a 5’- 
nucleotidase activity 1.5-2-fold lower than un- 

separated cells. 5’-Nucleotidase activity of PNA- thy- 

mocytes was thus 5-l l-fold higher than that of 
PNA’ cells. PNA had no effect on pure 5’-nu- 

cleotidase from pig lymph node lymphocytes [5] 

(not shown). Thymocyte 5’nucleotidase was neither 

affected by incubation with 0.2 M D-galactose for 

lo-60 min, nor by preincubation with PNA (<50 pg/ 

Table 1 

Mitogenic response of mouse thymocytes to Con A and PHA 
- 

Mitogen Unseparated PNA+ thymocytes PNA- thymocytes Hydrocortisone-resis- 

thymocytes tant thymocytes 

None 600 + 200 52Ok 50 900 f 300 650+ 60 
Con A 93 ooo+-7000 23 000 f 3000 210000~15000 80000+10000 

PHA 15oot 300 600 f 200 8OOOOk 6000 630005 4000 

[3H]Thymidine incorporation (cpm) in mouse thymocyte populations, 60 h after stimulation by 

PHA or con A 

Table 2 

5’-Nucleotidase activities (nmol Pi. h-’ . mg protein-‘) of thymocytes 
(unseparated, PNA+, PNA-) from different mouse strains 

C3H/eb CB20 C57BL6 DBA2 Swiss 

Unseparated 
thymocytes 30 40 30 15-35 
PNA+ thymocytes 18 25 11.2 20 8.3-25 
PNA- thymocytes 130 130 125 150 90-210 
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Table 3 
Effect of hydrocortisone in vivo on the 5’-nucleotidase 

activity of mouse thymocytes 

Expt 1 Expt 2 Expt 3 

Thymocytes from hydro- 
cortisone-treated mice 194 144 162 
Unseparated thymocytes 
from untreated mice 30 35 30 
PNA+ thymocytes from 
untreated mice 20 17.5 18 
PNA- thymocytes from 
untreated mice 110 133 130 

5’-Nucleotidase activities (nmol Pi h-’ mg protein-‘) of 
thymocytes from hydrocortisone-treated Swiss mice and of 
control thymocytes (unseparated, PNA+, PNA-) from 
untreated Swiss mice 

2.5 X lo6 cells), which ruled out the possibility that 

the low 5’nucleotidase level of PNA’ thymocytes was 

due to D-galactose treatment or to inhibition by PNA 
uncompletely removed from the cell membrane. 

To study mature thymocytes, we used hydro- 
cortisone treatment to deplete the immature cell 
population [26]. Table 3 represents the .5’-nu- 
cleotidase activity of Swiss mouse thymocytes, two 
days after an intraperitoneal injection of 2.5 mg 
hydrocortisone acetate. Hydrocortisone-resistant cells 
were pooled from 10 mice (2, 15 X lo6 cells/ 
thymus); they did not agglutinate with PNA. Their 
5’nucleotidase activity was compared with that of 
thymocytes from untreated mice (unseparated, 
PNA’, PNA-). 5’-Nucleotidase activity of hydrocorti- 
sone-resistant cells was 5- and 88IO-fold higher than 
that of unseparated and PNA- control thymocytes, 
respectively. It appeared that PNA- control thymo- 
cytes and hydrocortisone-resistant thymocytes, 
which have been claimed to be identical (mature) 
population [26] had similar S’nucleotidase activities. 

5’-Nucleotidase activity of splenic lymphocytes 
from Swiss mice was determined in 10 different 

expt ; its mean value was 320 + 70 mnol Pi . h-l . mg-’ . 
As no difference between T and B splenocyte 
5’nucleotidase activity was evidenced [ 141, it appear- 

ed that PNA- or hydrocortisone-resistant thymocytes 
had lower 5’nucleotidase activity than T splenocytes. 

4. Discussion 

Using the general technique in [28] we separated 

mouse thymocytes into PNA- thymocytes identified 

as mature cells (medulary) and PNA’ thymocytes 
which are immature (cortical). As it was shown 

[26,27] that PNA agglutination and subsequent 
dispersion with galactose yielded fully functional 

cells, and as these treatments had no effect on 
5’-nucleotidase activity, we can state that the low 

5’nucleotidase activity of mouse thymocytes results 
from the presence of 90-95% immature cells. In 

mouse thymus immature cells can be selectively 

eliminated by hydrocortisone treatment, the remain- 

ing mature cells had the same high 5’nucleotidase 
activity than PNA- control thymocytes. These re- 

peatedly obtained results confirmed that mature 

thymocyte 5’nucleotidase activity is lo-fold higher 
than that of immature thymocytes. No difference for 

5’-nucleotidase activity were found in thymocytes 
from hydrocortisone-treated rats or untreated con- 

trolrats(410+ 105 and 370 + 110nmolPi. h-r. mg-‘, 
respectively) [ 151; however it must be emphasized 
that the 5’nucleotidase value reported for control 
thymocytes was abnormally high as compared to rat 

splenocyte 5’nucleotidase (890 nmol Pi . h-r . mg-‘), 
as generally the thymocyte activity is 6- 1 O-fold 
lower ([ 13 ,141 and ourselves) or even more in rabbit 
thymocytes [ 161. 

5’-Nucleotidase activity in PNA- mature thymo- 
cytes appeared lower than in T splenocytes, if we 

assume that T and B splenocytes display the same 
mean activity [ 141. This result can be explained if 
thymus maturation generates several subclasses of 
T-cells [29] with different 5’nucleotidase activity 

and if PNA- thymocyte subpopulation is heterogene- 
ous [30]. On the other hand a’ small subpopulation 
of mature lymphocytes bearing PNA receptors is 
mostly found in the thymus [29] and could account 

for the 5’nucleotidase activity of PNA’ thymocytes. 
5’-Nucleotidase activity appears to be restricted to 

hydrocortisone-resistant thymocytes. It was recently 
shown that the steroid-resistant intrathymic pool is 
a resident subpopulation which is not exported to 
the periphery [31]. We do not know if 5’-nu- 

cleotidase increase in peripheral T cells occurs after 

migration from the thymus to secondary lymphoid 
tissues or before. 

Recent reports on the low 5’-nucleotidase activity 
in lymphocytes from patients with CLL [ 17-201 or 

hypogammaglobulinemia [21,22] increase the 
interest of studying the function and distribution of 
this enzyme among various lymphocyte populations. 
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T and B cells from cord blood have a lower activity 
than adult lymphocytes [22,23]. Malignant trans- 
formed cells display also very low activity [32]. Most 
of these cells are thought to be arrested at an early 
stage of maturation [24,25]. As we found a low 
5’nucleotidase activity in immature thymocytes, the 

absence of 5’nucleotidase activity might be 
considered as a marker of a selective maturation 
arrest. This was confirmed by the absence of detect- 
able 5’nucleotidase in new-born cat liver cells and in 

cells from regenerating liver [33]. 
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