8 research outputs found

    Empirical Exploration of Zone-by-zone Energy Flexibility: a Non-intrusive Load Disaggregation Approach for Commercial Buildings

    Full text link
    Building energy flexibility has been increasingly demonstrated as a cost-effective solution to respond to the needs of energy networks, including electric grids and district cooling and heating systems, improving the integration of intermittent renewable energy sources. Adjusting zonal temperature set-points is one of the most promising measures to unlock the energy flexibility potential of central air conditioning systems in complex commercial buildings. However, most existing studies focused on quantifying the energy flexibility on the building level since only building-level energy consumption is normally metered in commercial buildings. This study aims to investigate the impacts of temperature set-point adjustment strategies on zone-level thermal and energy performance by developing a non-intrusive data-driven load disaggregation method (i.e., a virtual zonal power meter). Three university buildings in Northern California were selected to test the proposed load disaggregation method. We found that heterogeneities of energy use and energy flexibility existed across not only buildings but also air handling units (AHUs) and zones. Moreover, a small number of zones accounted for a large amount of energy use and energy flexibility; and the most energy-intensive zones are not necessarily the most energy-flexible zones. For the three tested buildings, the top 30% most energy-intensive zones accounted for around 60% of the total energy use; and the top 30% most energy-flexible zones provided around 80% of the total energy flexibility. The proposed method enables the electric grid or district energy system operators to regard the controlled energy-flexible entities as a fleet of AHUs or zones instead of a fleet of buildings and helps unlock the possibility for targeted demand flexibility strategies that balance zone-by-zone energy reduction with zone-by-zone costs to occupants.Comment: 33 pages, 18 figure

    Optimization of electric vehicle charging in a fully (nearly) electric campus energy system

    Get PDF
    The goal of this work is to build a set of computational tools to aid decision making for the modelling and operations of integrated urban energy systems that actively interact with the power grid of the future. District heating and cooling networks incorporating heat recovery and large-scale thermal storage, such as the Stanford campus system, dramatically reduce energy waste and greenhouse gas emissions. They have historically played a small, but important role at a local level. Here we explore the potential for other co-benefits, including the provision of load following services to the electrical grid, carbon emissions reductions or demand charge management. We formulate and solve the problem of optimally scheduling daily operations for different energy assets under a demand-charge-based tariff, given available historical data. We also explore the interaction and interdependence of an electrified thermal energy network with actively managed power sources and sinks that concurrently draw from the same electrical distribution feeder. At Stanford University, large-scale electric vehicle charging, on-site photovoltaic generation and controllable building loads could each separately represent up to 5 MW, or 15% of the aggregate annual peak power consumption in the very near future. We cooptimize financial savings from peak power reductions and shifting consumption to lower price periods and assess the flexibility of both the different components and the integrated energy system as a whole. We find that thermal storage, especially complemented with electric vehicle charging, can play the role that is often proposed for electrochemical storage for demand charge management applications and quantitatively evaluate potential revenue generators for an integrated urban energy system. Although there is little value to smart charging strategies for low penetrations of electric vehicles, they are needed to avoid significant increases in costs once penetration reaches a certain threshold – in the Stanford case, 750-1,000 vehicles, or 25% of the vehicle commuter population

    Data-driven characterization of cooling needs in a portfolio of co-located commercial buildings

    No full text
    Summary: The increasing cooling needs in commercial buildings, exacerbated by climate change, warrant immediate attention. These buildings, characterized by their long lifespans and slow stock turnover, change consumption over time. This study develops simple, interpretable data-driven models using weather- and occupancy-related features to analyze the cooling in different types of co-located buildings. Over five years, our models effectively predict the cooling load across buildings with R-squared values of 81%–87%. Factoring out geography-driven differences, we identify strong heterogeneity within and across different buildings. The average estimated base load cooling varies between 0.50 and 4.4 MJ/m2/day across buildings, with healthcare facilities exhibiting the highest loads and residences the lowest. Consumption increases by 7.6%–9.8% for every 1°C increase in mean daily outside temperature, with up to 27% reductions in offices on weekends. These insights enable diagnoses of inefficiencies, post-retrofitting performance tracking, and proactive planning for climate-related impacts

    Distributional health impacts of electricity imports in the United States

    No full text
    The electric grid is evolving rapidly in response to climate change. As renewables are incorporated, more interconnection of the grid is expected. Exposure to fine particulate matter (PM2.5) from fossil-fuel generation causes adverse health impacts, including thousands of premature deaths each year in the United States. It is well understood that PM2.5 exposure can occur at great distances from pollutant sources, but insufficient work has been done to understand the role of grid interconnection and trade in causing pollution-related mortality. Regions with clean generation can import electricity from regions with highly polluting generation sources, allowing them to benefit from the electricity consumption while people in other regions suffer the associated health damages. We use flow tracing and consumption-based accounting to characterize the health damages from exposure to PM _2.5 from electricity imports. We find that 8% of our estimated premature deaths from electricity consumption in the United States are due to electricity imports. There is large geographic heterogeneity, with the most impacts occurring in the Midwest. While the West Coast has much cleaner generation and lower impacts overall, in many West Coast Balancing Areas, more than 50% of the estimated premature mortality associated with electricity consumption is caused by electricity imports, with some groups experiencing larger impacts than others

    The Global Technical, Economic, and Feasible Potential of Renewable Electricity

    No full text
    Renewable electricity generation will need to be rapidly scaled to address climate change and other environmental challenges. Doing so effectively will require an understanding of resource availability. We review estimates for renewable electricity of the global technical potential, defined as the amount of electricity that could be produced with current technologies when accounting for geographical and technical limitations as well as conversion efficiencies; economic potential, which also includes cost; and feasible potential, which accounts for societal and environmental constraints. We consider utility-scale and rooftop solar photovoltaics, concentrated solar power, onshore and offshore wind, hydropower, geothermal electricity, and ocean (wave, tidal, ocean thermal energy conversion, and salinity gradient energy) technologies. We find that the reported technical potential for each energy resource ranges over several orders of magnitude across and often within technologies. Therefore, we also discuss the main factors explaining why authors find such different results. According to this review and on the basis of the most robust studies, we find that technical potentials for utility-scale solar photovoltaic, concentrated solar power, onshore wind, and offshore wind are above 100 PWh/year. Hydropower, geothermal electricity, and ocean thermal energy conversion have technical potentials above 10 PWh/year. Rooftop solar photovoltaic, wave, and tidal have technical potentials above 1 PWh/year. Salinity gradient has a technical potential above 0.1 PWh/year. The literature assessing the global economic potential of renewables, which considers the cost of each renewable resource, shows that the economic potential is higher than current and near-future electricity demand. Fewer studies have calculated the global feasible potential, which considers societal and environmental constraints. While these ranges are useful for assessing the magnitude of available energy sources, they may omit challenges for large-scale renewable portfolios
    corecore