12,066 research outputs found
Collide and Conquer: Constraints on Simplified Dark Matter Models using Mono-X Collider Searches
The use of simplified models as a tool for interpreting dark matter collider
searches has become increasingly prevalent, and while early Run II results are
beginning to appear, we look to see what further information can be extracted
from the Run I dataset. We consider three `standard' simplified models that
couple quarks to fermionic singlet dark matter: an -channel vector mediator
with vector or axial-vector couplings, and a -channel scalar mediator. Upper
limits on the couplings are calculated and compared across three alternate
channels, namely mono-jet, mono- (leptonic) and mono- (hadronic). The
strongest limits are observed in the mono-jet channel, however the
computational simplicity and absence of significant -channel model width
effects in the mono-boson channels make these a straightforward and competitive
alternative. We also include a comparison with relic density and direct
detection constraints.Comment: 32 pages, 8 figures; v2: minor changes, conclusion unchanged, matches
published versio
Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model
Context: Resonances in the stellar orbital motion under perturbations from
spiral arms structure play an important role in the evolution of the disks of
spiral galaxies. The epicyclic approximation allows the determination of the
corresponding resonant radii on the equatorial plane (for nearly circular
orbits), but is not suitable in general.
Aims: We expand the study of resonant orbits by analysing stellar motions
perturbed by spiral arms with Gaussian-shaped profiles without any restriction
on the stellar orbital configurations, and we expand the concept of Lindblad
(epicyclic) resonances for orbits with large radial excursions.
Methods: We define a representative plane of initial conditions, which covers
the whole phase space of the system. Dynamical maps on representative planes
are constructed numerically, in order to characterize the phase-space structure
and identify the precise location of resonances. The study is complemented by
the construction of dynamical power spectra, which provide the identification
of fundamental oscillatory patterns in the stellar motion.
Results: Our approach allows a precise description of the resonance chains in
the whole phase space, giving a broader view of the dynamics of the system when
compared to the classical epicyclic approach, even for objects in retrograde
motion. The analysis of the solar neighbourhood shows that, depending on the
current azimuthal phase of the Sun with respect to the spiral arms, a star with
solar kinematic parameters may evolve either inside the stable co-rotation
resonance or in a chaotic zone.
Conclusions: Our approach contributes to quantifying the domains of resonant
orbits and the degree of chaos in the whole Galactic phase-space structure. It
may serve as a starting point to apply these techniques to the investigation of
clumps in the distribution of stars in the Galaxy, such as kinematic moving
groups.Comment: 17 pages, 15 figures. Matches accepted version in A&
Storage and Retrieval of a Microwave Field in a Spin Ensemble
We report the storage and retrieval of a small microwave field from a
superconducting resonator into collective excitations of a spin ensemble. The
spins are nitrogen-vacancy centers in a diamond crystal. The storage time of
the order of 30 ns is limited by inhomogeneous broadening of the spin ensemble.Comment: 4 pages + supplementary material. Submitted to PR
Finite-time Singularities in Surface-Diffusion Instabilities are Cured by Plasticity
A free material surface which supports surface diffusion becomes unstable
when put under external non-hydrostatic stress. Since the chemical potential on
a stressed surface is larger inside an indentation, small shape fluctuations
develop because material preferentially diffuses out of indentations. When the
bulk of the material is purely elastic one expects this instability to run into
a finite-time cusp singularity. It is shown here that this singularity is cured
by plastic effects in the material, turning the singular solution to a regular
crack.Comment: 4 pages, 3 figure
Diffractive jets production in pp-collisions
We consider the exclusive diffractive dissociation of a proton into three
jets with large transverse momenta in the double-logarithmic approximation of
perturbative QCD. This process is sensitive to the proton unintegrated gluon
distribution at small x and to the proton light-cone distribution amplitudes.
According to our estimates, an observation of such processes in the early runs
at LHC is feasible for jet transverse momenta of the order of 5 GeV.Comment: Presented at International Workshop on Diffraction in High-Energy
Physics, La Londe-les-Maures, France, September 9 - 14, 200
Bimodal chemical evolution of the Galactic disk and the Barium abundance of Cepheids
In order to understand the Barium abundance distribution in the Galactic disk
based on Cepheids, one must first be aware of important effects of the
corotation resonance, situated a little beyond the solar orbit. The thin disk
of the Galaxy is divided in two regions that are separated by a barrier
situated at that radius. Since the gas cannot get across that barrier, the
chemical evolution is independent on the two sides of it. The barrier is caused
by the opposite directions of flows of gas, on the two sides, in addition to a
Cassini-like ring void of HI (caused itself by the flows). A step in the
metallicity gradient developed at corotation, due to the difference in the
average star formation rate on the two sides, and to this lack of communication
between them. In connection with this, a proof that the spiral arms of our
Galaxy are long-lived (a few billion years) is the existence of this step. When
one studies the abundance gradients by means of stars which span a range of
ages, like the Cepheids, one has to take into account that stars, contrary to
the gas, have the possibility of crossing the corotation barrier. A few stars
born on the high metallicity side are seen on the low metallicity one, and
vice-versa. In the present work we re-discuss the data on Barium abundance in
Cepheids as a function of Galactic radius, taking into account the scenario
described above. The [Ba/H] ratio, plotted as a function of Galactic radius,
apparently presents a distribution with two branches in the external region
(beyond corotation). One can re-interpret the data and attribute the upper
branch to the stars that were born on the high metallicity side. The lower
branch, analyzed separately, indicates that the stars born beyond corotation
have a rising Barium metallicity as a function of Galactic radius.Comment: 6 pages, 7 figures, Proceedings of IAU Symposium 29
- …