4 research outputs found
Impaired pro‐resolving mechanisms promote abnormal NETosis , fueling autoimmunity in sickle cell disease
Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorders with still high mortality and morbidity and limited therapeutic options. SCD is characterized by anemia, chronic hemolysis, and acute vaso-occlusive painful crises. The biocomplexity of SCD goes beyond red cells, involving neutrophils and soluble factors such as cytokines or alternative complement pathway intensively cross-talking with vascular endothelial cells. In addition, in SCD, the overactivation of neutrophils contributes to the production of neutrophil extracellular traps (NETs) (1, 2). This might trigger endothelial vascular injury, promoting acute sickle cell related events and increasing the risk of infections in patients with SC
Epeleuton, a novel synthetic ω-3 fatty acid, reduces hypoxia/ reperfusion stress in a mouse model of sickle cell disease
Inflammatory vasculopathy is critical in sickle cell disease (SCD)-associated organ damage. An imbalance between pro-inflammatory and pro-resolving mechanisms in response to different triggers such as hypoxia/reoxygenation or infections has been proposed to contribute to the progression of SCD. Administration of specialized pro-resolving lipid mediators may provide an effective therapeutic strategy to target inflammatory vasculopathy and to modulate inflammatory response. Epeleuton (15 hydroxy eicosapentaenoic acid ethyl ester) is a novel, orally administered, second-generation ω-3 fatty acid with a favorable clinical safety profile. In this study we show that epeleuton re-programs the lipidomic pattern of target organs for SCD towards a pro-resolving pattern. This protects against systemic and local inflammatory responses and improves red cell features, resulting in reduced hemolysis and sickling compared with that in vehicle-treated SCD mice. In addition, epeleuton prevents hypoxia/reoxygenation-induced activation of nuclear factor-κB with downregulation of the NLRP3 inflammasome in lung, kidney, and liver. This was associated with downregulation of markers of vascular activation in epeleuton-treated SCD mice when compared to vehicle-treated animals. Collectively our data support the potential therapeutic utility of epeleuton and provide the rationale for the design of clinical trials to evaluate the efficacy of epeleuton in patients with SCD