124 research outputs found

    Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis

    Get PDF
    Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the frequency range of engineering interest

    Tackling Lateral Variability Using Surface Waves: A Tomography-Like Approach

    Get PDF
    Lateral velocity variations in the near-surface reflect the presence of buried geological or anthropic structures, and their identification is of interest for many fields of application. Surface wave tomography (SWT) is a powerful technique for detecting both smooth and sharp lateral velocity variations at very different scales. A surface-wave inversion scheme derived from SWT is here applied to a 2-D active seismic dataset to characterize the shape of an urban waste deposit in an old landfill, located 15 km South of Vienna (Austria). First, the tomography-derived inverse problem for the 2-D case is defined: under the assumption of straight rays at the surface connecting sources and receivers, the forward problem for one frequency reduces to a linear relationship between observed phase differences at adjacent receivers and wavenumbers (from which phase velocities are straightforwardly derived). A norm damping regularization constraint is applied to ensure a smooth solution in space: the choice of the damping parameter is made through a minimization process, by which only phase variations of the order of the average wavelength are modelled. The inverse problem is solved for each frequency with a weighted least-squares approach, to take into account the data error variances. An independent multi-offset phase analysis (MOPA) is performed using the same dataset, for comparison: pseudo-sections from the tomography-derived linear inversion and MOPA are very consistent, with the former giving a more continuous result both in space and frequency and less artefacts. Local dispersion curves are finally depth inverted and a quasi-2-D shear wave velocity section is retrieved: we identify a well-defined low velocity zone and interpret it as the urban waste deposit body. Results are consistent with both electrical and electromagnetic measurements acquired on the same line

    Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment

    Get PDF
    Abstract. This paper presents a time-lapse application of electrical methods (electrical resistivity tomography, ERT; and mise-à-la-masse, MALM) for monitoring plant roots and their activity (root water uptake) during a controlled infiltration experiment. The use of non-invasive geophysical monitoring is of increasing interest as these techniques provide time-lapse imaging of processes that otherwise can only be measured at few specific spatial locations. The experiment here described was conducted in a vineyard in Bordeaux (France) and was focused on the behaviour of two neighbouring grapevines. The joint application of ERT and MALM has several advantages. While ERT in time-lapse mode is sensitive to changes in soil electrical resistivity and thus to the factors controlling it (mainly soil water content, in this context), MALM uses DC current injected into a tree stem to image where the plant root system is in effective electrical contact with the soil at locations that are likely to be the same where root water uptake (RWU) takes place. Thus, ERT and MALM provide complementary information about the root structure and activity. The experiment shows that the region of likely electrical current sources produced by MALM does not change significantly during the infiltration time in spite of the strong changes of electrical resistivity caused by changes in soil water content. Ultimately, the interpretation of the current source distribution strengthened the hypothesis of using current as a proxy for root detection. This fact, together with the evidence that current injection in the soil and in the stem produces totally different voltage patterns, corroborates the idea that this application of MALM highlights the active root density in the soil. When considering the electrical resistivity changes (as measured by ERT) inside the stationary volume of active roots delineated by MALM, the overall tendency is towards a resistivity increase during irrigation time, which can be linked to a decrease in soil water content caused by root water uptake. On the contrary, when considering the soil volume outside the MALM-derived root water uptake region, the electrical resistivity tends to decrease as an effect of soil water content increase caused by the infiltration. The use of a simplified infiltration model confirms at least qualitatively this behaviour. The monitoring results are particularly promising, and the method can be applied to a variety of scales including the laboratory scale where direct evidence of root structure and root water uptake can help corroborate the approach. Once fully validated, the joint use of MALM and ERT can be used as a valuable tool to study the activity of roots under a wide variety of field conditions

    Seismic noise and controlled source surveys: tools for seismic hazard deterministic approach (field measurements in Venice Plain, Italy)

    Get PDF
    The work concerns the study of surface wave dispersion in order to infer shear wave structural model of a Venice Plain area, Italy. Wave dispersion is studied using controlled source survays and seismic noise cross correlation. The study involves also local earthquakes monitoring and HVSR technique. The structural model obtained is used to compute a detrministic hazard seismic scenario of the studied area
    corecore