312 research outputs found

    Fostering collaborative research for rare genetic disease: The example of Niemann-Pick type C disease

    Get PDF
    Rare disease represents one of the most significant issues facing the medical community and health care providers worldwide, yet the majority of these disorders never emerge from their obscurity, drawing little attention from the medical community or the pharmaceutical industry. The challenge therefore is how best to mobilize rare disease stakeholders to enhance basic, translational and clinical research to advance understanding of pathogenesis and accelerate therapy development. Here we describe a rare, fatal brain disorder known as Niemann-Pick type C (NPC) and an innovative research collaborative known as Support of Accelerated Research for NPC (SOAR-NPC) which illustrates one pathway through which knowledge of a rare disease and its possible treatments are being successfully advanced. Use of the “SOAR” mechanism, we believe, offers a blueprint for similar advancement for many other rare disorders

    Variability in Blood Pressure Assessment in Patients Supported with the HeartMate 3TM

    Get PDF
    Targeted blood pressure (BP) control is a goal of left ventricular assist device medical management, but the interpretation of values obtained from noninvasive instruments is challenging. In the MOMENTUM 3 Continued Access Protocol, paired BP values in HeartMate 3 (HM3) patients were compared from arterial (A)-line and Doppler opening pressure (DOP) (319 readings in 261 patients) and A-line and automated cuff (281 readings in 247 patients). Pearson (R) correlations between A-line mean arterial (MAP) and systolic blood pressures (SBP) were compared with DOP and cuff measures according to the presence (\u3e1 pulse in 5 seconds) or absence of a palpable radial pulse. There were only moderate correlations between A-line and noninvasive measurements of SBP (DOP R = 0.58; cuff R = 0.47) and MAP (DOP R = 0.48; cuff R = 0.37). DOP accuracy for MAP estimation, defined as the % of readings within ± 10 mmHg of A-line MAP, decreased from 80% to 33% for DOP ≤ 90 vs. \u3e90 mmHg, and precision also diminished (mean absolute difference [MAD] increased from 6.3 ± 5.6 to 16.1 ± 11.4 mmHg). Across pulse pressures, cuff MAPs were within ±10 mmHg of A-line 62.9%-68.8% of measures and MADs were negligible. The presence of a palpable pulse reduced the accuracy and precision of the DOP-MAP estimation but did not impact cuff-MAP accuracy or precision. In summary, DOP may overestimate MAP in some patients on HM3 support. Simultaneous use of DOP and automated cuff and radial pulse may be needed to guide antihypertensive medication titration in outpatients on HM3 support

    Genotype and Phenotype of Transthyretin Cardiac Amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey)

    Get PDF
    Background Transthyretin amyloidosis (ATTR) is a heterogeneous disorder with multiorgan involvement and a genetic or nongenetic basis. Objectives The goal of this study was to describe ATTR in the United States by using data from the THAOS (Transthyretin Amyloidosis Outcomes Survey) registry. Methods Demographic, clinical, and genetic features of patients enrolled in the THAOS registry in the United States (n = 390) were compared with data from patients from other regions of the world (ROW) (n = 2,140). The focus was on the phenotypic expression and survival in the majority of U.S. subjects with valine-to-isoleucine substitution at position 122 (Val122Ile) (n = 91) and wild-type ATTR (n = 189). Results U.S. subjects are older (70 vs. 46 years), more often male (85.4% vs. 50.6%), and more often of African descent (25.4% vs. 0.5%) than the ROW. A significantly higher percentage of U.S. patients with ATTR amyloid seen at cardiology sites had wild-type disease than the ROW (50.5% vs. 26.2%). In the United States, 34 different mutations (n = 201) have been reported, with the most common being Val122Ile (n = 91; 45.3%) and Thr60Ala (n = 41; 20.4%). Overall, 91 (85%) of 107 patients with Val122Ile were from the United States, where Val122Ile subjects were younger and more often female and black than patients with wild-type disease, and had similar cardiac phenotype but a greater burden of neurologic symptoms (pain, numbness, tingling, and walking disability) and worse quality of life. Advancing age and lower mean arterial pressure, but not the presence of a transthyretin mutation, were independently associated with higher mortality from a multivariate analysis of survival. Conclusions In the THAOS registry, ATTR in the United States is overwhelmingly a disorder of older adult male subjects with a cardiac-predominant phenotype. Val122Ile is the most common transthyretin mutation, and neurologic phenotypic expression differs between wild-type disease and Val122Ile, but survival from enrollment in THAOS does not. (Transthyretin-Associated Amyloidoses Outcome Survey [THAOS]; NCT00628745

    Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation

    Get PDF
    PURPOSE: Variants in MYBPC3 causing loss of function are the most common cause of hypertrophic cardiomyopathy (HCM). However, a substantial number of patients carry missense variants of uncertain significance (VUS) in MYBPC3. We hypothesize that a structural-based algorithm, STRUM, which estimates the effect of missense variants on protein folding, will identify a subgroup of HCM patients with a MYBPC3 VUS associated with increased clinical risk. METHODS: Among 7,963 patients in the multicenter Sarcomeric Human Cardiomyopathy Registry (SHaRe), 120 unique missense VUS in MYBPC3 were identified. Variants were evaluated for their effect on subdomain folding and a stratified time-to-event analysis for an overall composite endpoint (first occurrence of ventricular arrhythmia, heart failure, all-cause mortality, atrial fibrillation, and stroke) was performed for patients with HCM and a MYBPC3 missense VUS. RESULTS: We demonstrated that patients carrying a MYBPC3 VUS predicted to cause subdomain misfolding (STRUM+, ΔΔG ≤ −1.2 kcal/mol) exhibited a higher rate of adverse events compared with those with a STRUM- VUS (hazard ratio = 2.29, P = 0.0282). In silico saturation mutagenesis of MYBPC3 identified 4,943/23,427 (21%) missense variants that were predicted to cause subdomain misfolding. CONCLUSION: STRUM identifies patients with HCM and a MYBPC3 VUS who may be at higher clinical risk and provides supportive evidence for pathogenicity

    Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients with Hypertrophic Cardiomyopathy

    Get PDF
    Background - Pathogenic variants in MYBPC3, encoding cardiac MyBP-C, are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique MYBPC3 variants and relatively small genotyped HCM cohorts have precluded detailed genotype-phenotype correlations. Methods - Patients with HCM and MYBPC3 variants were identified from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Variant types and locations were analyzed, morphologic severity was assessed, and time-event analysis was performed (composite clinical outcome of sudden death, class III/IV heart failure, LVAD/transplant, atrial fibrillation). For selected missense variants falling in enriched domains, myofilament localization and degradation rates were measured in vitro. Results - Among 4,756 genotyped HCM patients in SHaRe, 1,316 patients were identified with adjudicated pathogenic truncating (N=234 unique variants, 1047 patients) or non-truncating (N=22 unique variants, 191 patients) variants in MYBPC3. Truncating variants were evenly dispersed throughout the gene, and hypertrophy severity and outcomes were not associated with variant location (grouped by 5' - 3' quartiles or by founder variant subgroup). Non-truncating pathogenic variants clustered in the C3, C6, and C10 domains (18 of 22, 82%, p<0.001 vs. gnomAD common variants) and were associated with similar hypertrophy severity and adverse event rates as observed with truncating variants. MyBP-C with variants in the C3, C6, and C10 domains was expressed in rat ventricular myocytes. C10 mutant MyBP-C failed to incorporate into myofilaments and degradation rates were accelerated by ~90%, while C3 and C6 mutant MyBP-C incorporated normally with degradation rate similar to wild-type. Conclusions - Truncating variants account for 91% of MYBPC3 pathogenic variants and cause similar clinical severity and outcomes regardless of location, consistent with locus-independent loss-of-function. Non-truncating MYBPC3 pathogenic variants are regionally clustered, and a subset also cause loss-of-function through failure of myofilament incorporation and rapid degradation. Cardiac morphology and clinical outcomes are similar in patients with truncating vs. non-truncating variants

    Hypertrophic Cardiomyopathy with Left Ventricular Systolic Dysfunction: Insights from the SHaRe Registry

    Get PDF
    Background: The term "end stage" has been used to describe hypertrophic cardiomyopathy (HCM) with left ventricular systolic dysfunction (LVSD), defined as occurring when left ventricular ejection fraction is <50%. The prognosis of HCM-LVSD has reportedly been poor, but because of its relative rarity, the natural history remains incompletely characterized. Methods: Data from 11 high-volume HCM specialty centers making up the international SHaRe Registry (Sarcomeric Human Cardiomyopathy Registry) were used to describe the natural history of patients with HCM-LVSD. Cox proportional hazards models were used to identify predictors of prognosis and incident development. Results: From a cohort of 6793 patients with HCM, 553 (8%) met the criteria for HCM-LVSD. Overall, 75% of patients with HCM-LVSD experienced clinically relevant events, and 35% met the composite outcome (all-cause death [n=128], cardiac transplantation [n=55], or left ventricular assist device implantation [n=9]). After recognition of HCM-LVSD, the median time to composite outcome was 8.4 years. However, there was substantial individual variation in natural history. Significant predictors of the composite outcome included the presence of multiple pathogenic/likely pathogenic sarcomeric variants (hazard ratio [HR], 5.6 [95% CI, 2.3-13.5]), atrial fibrillation (HR, 2.6 [95% CI, 1.7-3.5]), and left ventricular ejection fraction <35% (HR, 2.0 [95% CI, 1.3-2.8]). The incidence of new HCM-LVSD was ≈7.5% over 15 years. Significant predictors of developing incident HCM-LVSD included greater left ventricular cavity size (HR, 1.1 [95% CI, 1.0-1.3] and wall thickness (HR, 1.3 [95% CI, 1.1-1.4]), left ventricular ejection fraction of 50% to 60% (HR, 1.8 [95% CI, 1.2, 2.8]-2.8 [95% CI, 1.8-4.2]) at baseline evaluation, the presence of late gadolinium enhancement on cardiac magnetic resonance imaging (HR, 2.3 [95% CI, 1.0-4.9]), and the presence of a pathogenic/likely pathogenic sarcomeric variant, particularly in thin filament genes (HR, 1.5 [95% CI, 1.0-2.1] and 2.5 [95% CI, 1.2-5.1], respectively). Conclusions: HCM-LVSD affects ≈8% of patients with HCM. Although the natural history of HCM-LVSD was variable, 75% of patients experienced adverse events, including 35% experiencing a death equivalent an estimated median time of 8.4 years after developing systolic dysfunction. In addition to clinical features, genetic substrate appears to play a role in both prognosis (multiple sarcomeric variants) and the risk for incident development of HCM-LVSD (thin filament variants)

    Exercise Capacity in Patients With Obstructive Hypertrophic Cardiomyopathy:SEQUOIA-HCM Baseline Characteristics and Study Design

    Get PDF
    Patients with obstructive hypertrophic cardiomyopathy (oHCM) have increased risk of arrhythmia, stroke, heart failure, and sudden death. Contemporary management of oHCM has decreased annual hospitalization and mortality rates, yet patients have worsening health-related quality of life due to impaired exercise capacity and persistent residual symptoms. Here we consider the design of clinical trials evaluating potential oHCM therapies in the context of SEQUOIA-HCM (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM). This large, phase 3 trial is now fully enrolled (N = 282). Baseline characteristics reflect an ethnically diverse population with characteristics typical of patients encountered clinically with substantial functional and symptom burden. The study will assess the effect of aficamten vs placebo, in addition to standard-of-care medications, on functional capacity and symptoms over 24 weeks. Future clinical trials could model the approach in SEQUOIA-HCM to evaluate the effect of potential therapies on the burden of oHCM. (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM [SEQUOIA-HCM]; NCT05186818).</p
    corecore