8,700 research outputs found

    Comment on "Accelerated Detectors and Temperature in (Anti) de Sitter Spaces"

    Get PDF
    It is shown how the results of Deser and Levin on the response of accelerated detectors in anti-de Sitter space can be understood from the same general perspective as other thermality results in spacetimes with bifurcate Killing horizons.Comment: 5 pages, LaTe

    Relativistic Acoustic Geometry

    Get PDF
    Sound wave propagation in a relativistic perfect fluid with a non-homogeneous isentropic flow is studied in terms of acoustic geometry. The sound wave equation turns out to be equivalent to the equation of motion for a massless scalar field propagating in a curved space-time geometry. The geometry is described by the acoustic metric tensor that depends locally on the equation of state and the four-velocity of the fluid. For a relativistic supersonic flow in curved space-time the ergosphere and acoustic horizon may be defined in a way analogous the non-relativistic case. A general-relativistic expression for the acoustic analog of surface gravity has been found.Comment: 14 pages, LaTe

    Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)

    Get PDF
    The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases

    Small Orbits

    Full text link
    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.Comment: 40 pages, 9 tables. References added. Expanded comments added to sections III. C. 1. and III. F.

    Precision neutron interferometric measurement of the nd coherent neutron scattering length and consequences for models of three-nucleon forces

    Full text link
    We have performed the first high precision measurement of the coherent neutron scattering length of deuterium in a pure sample using neutron interferometry. We find b_nd = (6.665 +/- 0.004) fm in agreement with the world average of previous measurements using different techniques, b_nd = (6.6730 +/- 0.0045) fm. We compare the new world average for the nd coherent scattering length b_nd = (6.669 +/- 0.003) fm to calculations of the doublet and quartet scattering lengths from several modern nucleon-nucleon potential models with three-nucleon force (3NF) additions and show that almost all theories are in serious disagreement with experiment. This comparison is a more stringent test of the models than past comparisons with the less precisely-determined nuclear doublet scattering length of a_nd = (0.65 +/- 0.04) fm.Comment: 4 pages, 4 figure

    Black hole entropy: inside or out?

    Full text link
    A trialogue. Ted, Don, and Carlo consider the nature of black hole entropy. Ted and Carlo support the idea that this entropy measures in some sense ``the number of black hole microstates that can communicate with the outside world.'' Don is critical of this approach, and discussion ensues, focusing on the question of whether the first law of black hole thermodynamics can be understood from a statistical mechanics point of view.Comment: 42 pages, contribution to proceedings of Peyresq

    Effects of Heparin and Enoxaparin on APP Processing and Aβ Production in Primary Cortical Neurons from Tg2576 Mice

    Get PDF
    BACKGROUND Alzheimer's disease (AD) is caused by accumulation of Aβ, which is produced through sequential cleavage of β-amyloid precursor protein (APP) by the β-site APP cleaving enzyme (BACE1) and γ-secretase. Enoxaparin, a low molecular weight form of the glycosaminoglycan (GAG) heparin, has been reported to lower Aβ plaque deposition and improve cognitive function in AD transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS We examined whether heparin and enoxaparin influence APP processing and inhibit Aβ production in primary cortical cell cultures. Heparin and enoxaparin were incubated with primary cortical cells derived from Tg2576 mice, and the level of APP and proteolytic products of APP (sAPPα, C99, C83 and Aβ) was measured by western blotting. Treatment of the cells with heparin or enoxaparin had no significant effect on the level of total APP. However, both GAGs decreased the level of C99 and C83, and inhibited sAPPα and Aβ secretion. Heparin also decreased the level of β-secretase (BACE1) and α-secretase (ADAM10). In contrast, heparin had no effect on the level of ADAM17. CONCLUSIONS/SIGNIFICANCE The data indicate that heparin and enoxaparin decrease APP processing via both α- and β-secretase pathways. The possibility that GAGs may be beneficial for the treatment of AD needs further study.This work was funded by a project grant (490031) from the National Health and Medical Research Council of Australia (http://www.nhmrc.gov.au). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Cosmological and Black Hole Horizon Fluctuations

    Get PDF
    The quantum fluctuations of horizons in Robertson-Walker universes and in the Schwarzschild spacetime are discussed. The source of the metric fluctuations is taken to be quantum linear perturbations of the gravitational field. Lightcone fluctuations arise when the retarded Green's function for a massless field is averaged over these metric fluctuations. This averaging replaces the delta-function on the classical lightcone with a Gaussian function, the width of which is a measure of the scale of the lightcone fluctuations. Horizon fluctuations are taken to be measured in the frame of a geodesic observer falling through the horizon. In the case of an expanding universe, this is a comoving observer either entering or leaving the horizon of another observer. In the black hole case, we take this observer to be one who falls freely from rest at infinity. We find that cosmological horizon fluctuations are typically characterized by the Planck length. However, black hole horizon fluctuations in this model are much smaller than Planck dimensions for black holes whose mass exceeds the Planck mass. Furthermore, we find black hole horizon fluctuations which are sufficiently small as not to invalidate the semiclassical derivation of the Hawking process.Comment: 22 pages, Latex, 4 figures, uses eps

    Signaling, Entanglement, and Quantum Evolution Beyond Cauchy Horizons

    Full text link
    Consider a bipartite entangled system half of which falls through the event horizon of an evaporating black hole, while the other half remains coherently accessible to experiments in the exterior region. Beyond complete evaporation, the evolution of the quantum state past the Cauchy horizon cannot remain unitary, raising the questions: How can this evolution be described as a quantum map, and how is causality preserved? What are the possible effects of such nonstandard quantum evolution maps on the behavior of the entangled laboratory partner? More generally, the laws of quantum evolution under extreme conditions in remote regions (not just in evaporating black-hole interiors, but possibly near other naked singularities and regions of extreme spacetime structure) remain untested by observation, and might conceivably be non-unitary or even nonlinear, raising the same questions about the evolution of entangled states. The answers to these questions are subtle, and are linked in unexpected ways to the fundamental laws of quantum mechanics. We show that terrestrial experiments can be designed to probe and constrain exactly how the laws of quantum evolution might be altered, either by black-hole evaporation, or by other extreme processes in remote regions possibly governed by unknown physics.Comment: Combined, revised, and expanded version of quant-ph/0312160 and hep-th/0402060; 13 pages, RevTeX, 2 eps figure

    Perturbation spectrum in inflation with cutoff

    Get PDF
    It has been pointed out that the perturbation spectrum predicted by inflation may be sensitive to a natural ultraviolet cutoff, thus potentially providing an experimentally accessible window to aspects of Planck scale physics. A priori, a natural ultraviolet cutoff could take any form, but a fairly general classification of possible Planck scale cutoffs has been given. One of those categorized cutoffs, also appearing in various studies of quantum gravity and string theory, has recently been implemented into the standard inflationary scenario. Here, we continue this approach by investigating its effects on the predicted perturbation spectrum. We find that the size of the effect depends sensitively on the scale separation between cutoff and horizon during inflation.Comment: 6 pages; matches version accepted by PR
    • …
    corecore