15,399 research outputs found

    Black holes and Hawking radiation in spacetime and its analogues

    Full text link
    These notes introduce the fundamentals of black hole geometry, the thermality of the vacuum, and the Hawking effect, in spacetime and its analogues. Stimulated emission of Hawking radiation, the trans-Planckian question, short wavelength dispersion, and white hole radiation in the setting of analogue models are also discussed. No prior knowledge of differential geometry, general relativity, or quantum field theory in curved spacetime is assumed.Comment: 31 pages, 9 figures; to appear in the proceedings of the IX SIGRAV School on 'Analogue Gravity', Como (Italy), May 2011, eds. D. Faccio et. al. (Springer

    Burner rig corrosion of SiC at 1000 deg C

    Get PDF
    Sintered alpha-SiC was examined in both oxidation and hot corrosion with a burner rig at 400 kPa (4 atm) and 1000 C with a flow velocity of 310 ft/sec. Oxidation tests for times to 46 hr produced virtually no attack, whereas tests with 4 ppm Na produced extensive corrosion in 13-1/2 hr. Thick glassy layers composed primarily of sodium silicate formed in the salt corrosion tests. This corrosion attack caused severe pitting of the silicon carbide substrate which led to a 32 percent strength decrease below the as-received material. Parallel furnace tests of Na2SO4/air induced attacked yielded basically similar results with some slight product composition differences. The differences are explained in terms of the continuous sulfate deposition which occurs in a burner rig

    Comment on "Accelerated Detectors and Temperature in (Anti) de Sitter Spaces"

    Get PDF
    It is shown how the results of Deser and Levin on the response of accelerated detectors in anti-de Sitter space can be understood from the same general perspective as other thermality results in spacetimes with bifurcate Killing horizons.Comment: 5 pages, LaTe

    Non-equilibrium Thermodynamics of Spacetime

    Full text link
    It has previously been shown that the Einstein equation can be derived from the requirement that the Clausius relation dS = dQ/T hold for all local acceleration horizons through each spacetime point, where dS is one quarter the horizon area change in Planck units, and dQ and T are the energy flux across the horizon and Unruh temperature seen by an accelerating observer just inside the horizon. Here we show that a curvature correction to the entropy that is polynomial in the Ricci scalar requires a non-equilibrium treatment. The corresponding field equation is derived from the entropy balance relation dS =dQ/T+dS_i, where dS_i is a bulk viscosity entropy production term that we determine by imposing energy-momentum conservation. Entropy production can also be included in pure Einstein theory by allowing for shear viscosity of the horizon.Comment: 4 pages. Dedicated to Rafael Sorkin on the occasion of his 60th birthda

    General covariance, and supersymmetry without supersymmetry

    Get PDF
    An unusual four-dimensional generally covariant and supersymmetric SU(2) gauge theory is described. The theory has propagating degrees of freedom, and is invariant under a local (left-handed) chiral supersymmetry, which is half the supersymmetry of supergravity. The Hamiltonian 3+1 decomposition of the theory reveals the remarkable feature that the local supersymmetry is a consequence of Yang-Mills symmetry, in a manner reminiscent of how general coordinate invariance in Chern-Simons theory is a consequence of Yang-Mills symmetry. It is possible to write down an infinite number of conserved currents, which strongly suggests that the theory is classically integrable. A possible scheme for non-perturbative quantization is outlined. This utilizes ideas that have been developed and applied recently to the problem of quantizing gravity.Comment: 17 pages, RevTeX, two minor errors correcte

    Hawking radiation without black hole entropy

    Get PDF
    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws of black hole mechanics do not apply, and in situations in which the notion of black hole entropy does not even make any sense. This observation has important implications for any derivation of black hole entropy that seeks to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma

    Modelling Planck-scale Lorentz violation via analogue models

    Full text link
    Astrophysical tests of Planck-suppressed Lorentz violations had been extensively studied in recent years and very stringent constraints have been obtained within the framework of effective field theory. There are however still some unresolved theoretical issues, in particular regarding the so called "naturalness problem" - which arises when postulating that Planck-suppressed Lorentz violations arise only from operators with mass dimension greater than four in the Lagrangian. In the work presented here we shall try to address this problem by looking at a condensed-matter analogue of the Lorentz violations considered in quantum gravity phenomenology. Specifically, we investigate the class of two-component BECs subject to laser-induced transitions between the two components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. We shall show that such a model can be considered to be an explicit example high-energy Lorentz violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200

    HEAO 3 upper limits to the expected 1634 KeV line from SS 483

    Get PDF
    A model based on 24 Mg(1369) was developed as the source of the lines in which refractory grains in the jets, containing Mg and 0, are bombarded, by ambient protons in the local ISM. The narrowness of the features results because the recoil Mg nucleus is stopped in the grain before the 1369 keV excited state decays. A consequence of the 24 Mg interpretation is the expected appearance of other emission lines, due to 20 Ne and 20 Na, which are produced by proton bombardment of 24 Mg at the 33 MeV/nucleon energy corresponding to the velocity of the jets. These lines appear at rest energies of 1634 keV and 1636 keV, respectively, and should have essentially the same total flux as that emited at 1369 keV. The HEAO 3 data are examined to search for the 1634 keV (rest) emission. The observation and analysis, the results, and the implications for the understanding of SS 433 are discussed

    High-resolution spectrum of Cygnus X-1

    Get PDF
    A high resolution spectrum of Cygnus X-1 in the 45 to 600 keV range is presented. The measurement was made by the HEAO 3 gamma ray spectrometer during 82 days in the fall of 1979 and spring of 1980, when the source was in its normal low state. Results of a search for narrow emission lines from the source are reported. The spectrum shows no significant narrow features. The 3 delta upper limit to a narrow 511 keV annihilation line is 3 x 0.0001 photons/sq cm/s. There is also no evidence in HEAO 3 broadband data above 500 keV for the broad annihilation feature observed by HEAO 1

    Causal structure of acoustic spacetimes

    Get PDF
    The so-called ``analogue models of general relativity'' provide a number of specific physical systems, well outside the traditional realm of general relativity, that nevertheless are well-described by the differential geometry of curved spacetime. Specifically, the propagation of acoustic disturbances in moving fluids are described by ``effective metrics'' that carry with them notions of ``causal structure'' as determined by an exchange of sound signals. These acoustic causal structures serve as specific examples of what can be done in the presence of a Lorentzian metric without having recourse to the Einstein equations of general relativity. (After all, the underlying fluid mechanics is governed by the equations of traditional hydrodynamics, not by the Einstein equations.) In this article we take a careful look at what can be said about the causal structure of acoustic spacetimes, focusing on those containing sonic points or horizons, both with a view to seeing what is different from standard general relativity, and to seeing what the similarities might be.Comment: 51 pages, 39 figures (23 colour figures, colour used to convey physics information.) V2: Two references added, some additional discussion of maximal analytic extension, plus minor cosmetic change
    corecore