13,257 research outputs found

    President, Pastors, Parishes

    Get PDF

    Origin of the Thermal Radiation in a Solid-State Analog of a Black-Hole

    Get PDF
    An effective black-hole-like horizon occurs, for electromagnetic waves in matter, at a surface of singular electric and magnetic permeabilities. In a physical dispersive medium this horizon disappears for wave numbers with k>kck>k_c. Nevertheless, it is shown that Hawking radiation is still emitted if free field modes with k>kck>k_c are in their ground state.Comment: 13 Pages, 3 figures, Revtex with epsf macro

    Threshold effects and Planck scale Lorentz violation: combined constraints from high energy astrophysics

    Full text link
    Recent work has shown that dispersion relations with Planck scale Lorentz violation can produce observable effects at energies many orders of magnitude below the Planck energy M. This opens a window on physics that may reveal quantum gravity phenomena. It has already constrained the possibility of Planck scale Lorentz violation, which is suggested by some approaches to quantum gravity. In this work we carry out a systematic analysis of reaction thresholds, allowing unequal deformation parameters for different particle dispersion relations. The thresholds are found to have some unusual properties compared with standard ones, such as asymmetric momenta for pair creation and upper thresholds. The results are used together with high energy observational data to determine combined constraints. We focus on the case of photons and electrons, using vacuum Cerenkov, photon decay, and photon annihilation processes to determine order unity constraints on the parameters controlling O(E/M) Lorentz violation. Interesting constraints for protons (with photons or pions) are obtained even at O((E/M)^2), using the absence of vacuum Cerenkov and the observed GZK cutoff for ultra high energy cosmic rays. A strong Cerenkov limit using atmospheric PeV neutrinos is possible for O(E/M) deformations provided the rate is high enough. If detected, ultra high energy cosmological neutrinos might yield limits at or even beyond O((E/M)^2).Comment: 35 pages, 13 Figures, RevTex4. Version published in PRD. Expanded introduction, updated discussion of possible constraint if GZK cutoff is confirmed. Corrected typos. Added and updated reference

    High energy constraints on Lorentz symmetry violations

    Get PDF
    Lorentz violation at high energies might lead to non linear dispersion relations for the fundamental particles. We analyze observational constraints on these without assuming any a priori equality between the coefficients determining the amount of Lorentz violation for different particle species. We focus on constraints from three high energy processes involving photons and electrons: photon decay, photo-production of electron-positron pairs, and vacuum Cerenkov radiation. We find that cubic momentum terms in the dispersion relations are strongly constrained.Comment: 7 pages, 1 figure, Talk presented at CPT01; the Second Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, 15-18 Aug. 2001. Minor numerical error corrected, gamma-decay constraint update

    Effect of aluminum phosphate additions on composition of three-component plasma-sprayed solid lubricant

    Get PDF
    Image analysis (IA) and electron microprobe X-ray analysis (EMXA) were used to characterize a plasma-sprayed, self-lubricating coating, NASA LUBE PS106, specified by weight percent as 35NiCr-35Ag-30CaF2. To minimize segregation of the powder mixture during the plasma-spraying procedure, monoaluminum phosphate was added to form agglomerate particles. Three concentrations of AlPO4 were added to the mixtures: 1.25, 2.5, and 6.25 percent by weight. Analysis showed that 1.25 wt% AlPO4 yielded a CaF2 deficiency, 2.5 wt% kept the coating closest to specification, and 6.25 wt% yielded excess CaF2 as well as more impurities and voids and a deficiency in silver. Photomicrographs and X-ray maps are presented. The methods of IA and EMXA complement each other, and the reasonable agreement in the results increases the confidence in determining the coating composition

    Black holes and Hawking radiation in spacetime and its analogues

    Full text link
    These notes introduce the fundamentals of black hole geometry, the thermality of the vacuum, and the Hawking effect, in spacetime and its analogues. Stimulated emission of Hawking radiation, the trans-Planckian question, short wavelength dispersion, and white hole radiation in the setting of analogue models are also discussed. No prior knowledge of differential geometry, general relativity, or quantum field theory in curved spacetime is assumed.Comment: 31 pages, 9 figures; to appear in the proceedings of the IX SIGRAV School on 'Analogue Gravity', Como (Italy), May 2011, eds. D. Faccio et. al. (Springer

    Hawking radiation without black hole entropy

    Get PDF
    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws of black hole mechanics do not apply, and in situations in which the notion of black hole entropy does not even make any sense. This observation has important implications for any derivation of black hole entropy that seeks to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma

    General considerations of matter coupling with the self-dual connection

    Get PDF
    It has been shown for low-spin fields that the use of only the self-dual part of the connection as basic variable does not lead to extra conditions or inconsistencies. We study whether this is true for more general chiral action. We generalize the chiral gravitational action, and assume that half-integer spin fields are coupled with torsion linearly. The equation for torsion is solved and substituted back into the generalized chiral action, giving four-fermion contact terms. If these contact terms are complex, the imaginary part will give rise to extra conditions for the gravitational and matter field equations. We study the four-fermion contact terms taking spin-1/2 and spin-3/2 fields as examples.Comment: 16 pages, late
    • …
    corecore