18,849 research outputs found

    Hawking radiation without black hole entropy

    Get PDF
    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws of black hole mechanics do not apply, and in situations in which the notion of black hole entropy does not even make any sense. This observation has important implications for any derivation of black hole entropy that seeks to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma

    Density-altitude data from 150 rocket flights and 26 searchlight probings, 1947 through 1964

    Get PDF
    Density and altitude data from rocket flights and searchlight probing

    The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores

    Full text link
    The basic structure of the solar system is set by the presence of low-mass terrestrial planets in its inner part and giant planets in its outer part. This is the result of the formation of a system of multiple embryos with approximately the mass of Mars in the inner disk and of a few multi-Earth-mass cores in the outer disk, within the lifetime of the gaseous component of the protoplanetary disk. What was the origin of this dichotomy in the mass distribution of embryos/cores? We show in this paper that the classic processes of runaway and oligarchic growth from a disk of planetesimals cannot explain this dichotomy, even if the original surface density of solids increased at the snowline. Instead, the accretion of drifting pebbles by embryos and cores can explain the dichotomy, provided that some assumptions hold true. We propose that the mass-flow of pebbles is two-times lower and the characteristic size of the pebbles is approximately ten times smaller within the snowline than beyond the snowline (respectively at heliocentric distance r<ricer<r_{ice} and r>ricer>r_{ice}, where ricer_{ice} is the snowline heliocentric distance), due to ice sublimation and the splitting of icy pebbles into a collection of chondrule-size silicate grains. In this case, objects of original sub-lunar mass would grow at drastically different rates in the two regions of the disk. Within the snowline these bodies would reach approximately the mass of Mars while beyond the snowline they would grow to 20\sim 20 Earth masses. The results may change quantitatively with changes to the assumed parameters, but the establishment of a clear dichotomy in the mass distribution of protoplanets appears robust, provided that there is enough turbulence in the disk to prevent the sedimentation of the silicate grains into a very thin layer.Comment: In press in Icaru

    Computation of optimal singular controls

    Get PDF
    Computation of optimal singular control

    Relativistic Acoustic Geometry

    Get PDF
    Sound wave propagation in a relativistic perfect fluid with a non-homogeneous isentropic flow is studied in terms of acoustic geometry. The sound wave equation turns out to be equivalent to the equation of motion for a massless scalar field propagating in a curved space-time geometry. The geometry is described by the acoustic metric tensor that depends locally on the equation of state and the four-velocity of the fluid. For a relativistic supersonic flow in curved space-time the ergosphere and acoustic horizon may be defined in a way analogous the non-relativistic case. A general-relativistic expression for the acoustic analog of surface gravity has been found.Comment: 14 pages, LaTe

    Modelling Planck-scale Lorentz violation via analogue models

    Full text link
    Astrophysical tests of Planck-suppressed Lorentz violations had been extensively studied in recent years and very stringent constraints have been obtained within the framework of effective field theory. There are however still some unresolved theoretical issues, in particular regarding the so called "naturalness problem" - which arises when postulating that Planck-suppressed Lorentz violations arise only from operators with mass dimension greater than four in the Lagrangian. In the work presented here we shall try to address this problem by looking at a condensed-matter analogue of the Lorentz violations considered in quantum gravity phenomenology. Specifically, we investigate the class of two-component BECs subject to laser-induced transitions between the two components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. We shall show that such a model can be considered to be an explicit example high-energy Lorentz violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200

    Minimal Off-Shell Version of N = 1 Chiral Supergravity

    Get PDF
    We construct the minimal off-shell formulation of N = 1 chiral supergravity (SUGRA) introducing a complex antisymmetric tensor field BμνB_{\mu \nu} and a complex axial-vector field AμA_{\mu} as auxiliary fields. The resulting algebra of the right- and left-handed supersymmetry (SUSY) transformations closes off shell and generates chiral gauge transforamtions and vector gauge transformations in addition to the transformations which appear in the case without auxiliary fields.Comment: 9 pages, late

    Low-frequency sound propagation modeling over a locally-reacting boundary using the parabolic approximation

    Get PDF
    There is substantial interest in the analytical and numerical modeling of low-frequency, long-range atmospheric acoustic propagation. Ray-based models, because of frequency limitations, do not always give an adequate prediction of quantities such as sound pressure or intensity levels. However, the parabolic approximation method, widely used in ocean acoustics, and often more accurate than ray models for lower frequencies of interest, can be applied to acoustic propagation in the atmosphere. Modifications of an existing implicit finite-difference implementation for computing solutions to the parabolic approximation are discussed. A locally-reacting boundary is used together with a one-parameter impedance model. Intensity calculations are performed for a number of flow resistivity values in both quiescent and windy atmospheres. Variations in the value of this parameter are shown to have substantial effects on the spatial variation of the acoustic signal
    corecore