7,351 research outputs found

    Dense loops, supersymmetry, and Goldstone phases in two dimensions

    Full text link
    Loop models in two dimensions can be related to O(N) models. The low-temperature dense-loops phase of such a model, or of its reformulation using a supergroup as symmetry, can have a Goldstone broken-symmetry phase for N<2. We argue that this phase is generic for -2< N <2 when crossings of loops are allowed, and distinct from the model of non-crossing dense loops first studied by Nienhuis [Phys. Rev. Lett. 49, 1062 (1982)]. Our arguments are supported by our numerical results, and by a lattice model solved exactly by Martins et al. [Phys. Rev. Lett. 81, 504 (1998)].Comment: RevTeX, 5 pages, 3 postscript figure

    Finite average lengths in critical loop models

    Full text link
    A relation between the average length of loops and their free energy is obtained for a variety of O(n)-type models on two-dimensional lattices, by extending to finite temperatures a calculation due to Kast. We show that the (number) averaged loop length L stays finite for all non-zero fugacities n, and in particular it does not diverge upon entering the critical regime n -> 2+. Fully packed loop (FPL) models with n=2 seem to obey the simple relation L = 3 L_min, where L_min is the smallest loop length allowed by the underlying lattice. We demonstrate this analytically for the FPL model on the honeycomb lattice and for the 4-state Potts model on the square lattice, and based on numerical estimates obtained from a transfer matrix method we conjecture that this is also true for the two-flavour FPL model on the square lattice. We present in addition numerical results for the average loop length on the three critical branches (compact, dense and dilute) of the O(n) model on the honeycomb lattice, and discuss the limit n -> 0. Contact is made with the predictions for the distribution of loop lengths obtained by conformal invariance methods.Comment: 20 pages of LaTeX including 3 figure

    Mechanical properties and formation mechanisms of a wire of single gold atoms

    Get PDF
    A scanning tunneling microscope (STM) supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics (MD) simulations, and we find that the total effective stiffness of the nanostructure is strongly affected by the detailed local atomic arrangement at the chain bases.Comment: To be published in Phys. Rev. Lett. 4 pages with 3 figure

    Simulations of energetic beam deposition: from picoseconds to seconds

    Full text link
    We present a new method for simulating crystal growth by energetic beam deposition. The method combines a Kinetic Monte-Carlo simulation for the thermal surface diffusion with a small scale molecular dynamics simulation of every single deposition event. We have implemented the method using the effective medium theory as a model potential for the atomic interactions, and present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to 35 eV. The method is capable of following the growth of several monolayers at realistic growth rates of 1 monolayer per second, correctly accounting for both energy-induced atomic mobility and thermal surface diffusion. We find that the energy influences island and step densities and can induce layer-by-layer growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag), which correlates with where the net impact-induced downward interlayer transport is at a maximum. A high step density is needed for energy induced layer-by-layer growth, hence the effect dies away at increased temperatures, where thermal surface diffusion reduces the step density. As part of the development of the method, we present molecular dynamics simulations of single atom-surface collisions on flat parts of the surface and near straight steps, we identify microscopic mechanisms by which the energy influences the growth, and we discuss the nature of the energy-induced atomic mobility

    The spin temperature of high-redshift damped Lyman-α\alpha systems

    Get PDF
    We report results from a programme aimed at investigating the temperature of neutral gas in high-redshift damped Lyman-α\alpha absorbers (DLAs). This involved (1) HI 21cm absorption studies of a large DLA sample, (2) VLBI studies to measure the low-frequency quasar core fractions, and (3) optical/ultraviolet spectroscopy to determine DLA metallicities and velocity widths. Including literature data, our sample consists of 37 DLAs with estimates of the spin temperature TsT_s and the covering factor. We find a strong 4σ4\sigma) difference between the TsT_s distributions in high-z (z>2.4) and low-z (z<2.4) DLA samples. The high-z sample contains more systems with high TsT_s values, 1000\gtrsim 1000 K. The TsT_s distributions in DLAs and the Galaxy are also clearly (~6σ6\sigma) different, with more high-TsT_s sightlines in DLAs than in the Milky Way. The high TsT_s values in the high-z DLAs of our sample arise due to low fractions of the cold neutral medium. For 29 DLAs with metallicity [Z/H] estimates, we confirm the presence of an anti-correlation between TsT_s and [Z/H], at 3.5σ3.5\sigma significance via a non-parametric Kendall-tau test. This result was obtained with the assumption that the DLA covering factor is equal to the core fraction. Monte Carlo simulations show that the significance of the result is only marginally decreased if the covering factor and the core fraction are uncorrelated, or if there is a random error in the inferred covering factor. We also find evidence for redshift evolution in DLA TsT_s values even for the z>1 sub-sample. Since z>1 DLAs have angular diameter distances comparable to or larger than those of the background quasars, they have similar efficiency in covering the quasars. Low covering factors in high-z DLAs thus cannot account for the observed redshift evolution in spin temperatures. (Abstract abridged.)Comment: 37 pages, 22 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Atomic-scale modeling of the deformation of nanocrystalline metals

    Get PDF
    Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display technologically interesting properties, such as dramatically increased hardness, increasing with decreasing grain size. Due to the small grain size, direct atomic-scale simulations of plastic deformation of these materials are possible, as such a polycrystalline system can be modeled with the computational resources available today. We present molecular dynamics simulations of nanocrystalline copper with grain sizes up to 13 nm. Two different deformation mechanisms are active, one is deformation through the motion of dislocations, the other is sliding in the grain boundaries. At the grain sizes studied here the latter dominates, leading to a softening as the grain size is reduced. This implies that there is an ``optimal'' grain size, where the hardness is maximal. Since the grain boundaries participate actively in the deformation, it is interesting to study the effects of introducing impurity atoms in the grain boundaries. We study how silver atoms in the grain boundaries influence the mechanical properties of nanocrystalline copper.Comment: 10 pages, LaTeX2e, PS figures and sty files included. To appear in Mater. Res. Soc. Symp. Proc. vol 538 (invited paper). For related papers, see http://www.fysik.dtu.dk/~schiotz/publist.htm

    Refined conformal spectra in the dimer model

    Full text link
    Working with Lieb's transfer matrix for the dimer model, we point out that the full set of dimer configurations may be partitioned into disjoint subsets (sectors) closed under the action of the transfer matrix. These sectors are labelled by an integer or half-integer quantum number we call the variation index. In the continuum scaling limit, each sector gives rise to a representation of the Virasoro algebra. We determine the corresponding conformal partition functions and their finitizations, and observe an intriguing link to the Ramond and Neveu-Schwarz sectors of the critical dense polymer model as described by a conformal field theory with central charge c=-2.Comment: 44 page

    Exponential martingales and changes of measure for counting processes

    Full text link
    We give sufficient criteria for the Dol\'eans-Dade exponential of a stochastic integral with respect to a counting process local martingale to be a true martingale. The criteria are adapted particularly to the case of counting processes and are sufficiently weak to be useful and verifiable, as we illustrate by several examples. In particular, the criteria allow for the construction of for example nonexplosive Hawkes processes as well as counting processes with stochastic intensities depending on diffusion processes

    The Generation of Successive Unmarked Mutations and Chromosomal Insertion of Heterologous Genes in Actinobacillus pleuropneumoniae Using Natural Transformation

    Get PDF
    We have developed a simple method of generating scarless, unmarked mutations in Actinobacillus pleuropneumoniae by exploiting the ability of this bacterium to undergo natural transformation, and with no need to introduce plasmids encoding recombinases or resolvases. This method involves two successive rounds of natural transformation using linear DNA: the first introduces a cassette carrying cat (which allows selection by chloramphenicol) and sacB (which allows counter-selection using sucrose) flanked by sequences to either side of the target gene; the second transformation utilises the flanking sequences ligated directly to each other in order to remove the cat-sacB cassette. In order to ensure efficient uptake of the target DNA during transformation, A. pleuropneumoniae uptake sequences are added into the constructs used in both rounds of transformation. This method can be used to generate multiple successive deletions and can also be used to introduce targeted point mutations or insertions of heterologous genes into the A. pleuropneumoniae chromosome for development of live attenuated vaccine strains. So far, we have applied this method to highly transformable isolates of serovars 8 (MIDG2331), which is the most prevalent in the UK, and 15 (HS143). By screening clinical isolates of other serovars, it should be possible to identify other amenable strains
    corecore