7,376 research outputs found
Dense loops, supersymmetry, and Goldstone phases in two dimensions
Loop models in two dimensions can be related to O(N) models. The
low-temperature dense-loops phase of such a model, or of its reformulation
using a supergroup as symmetry, can have a Goldstone broken-symmetry phase for
N<2. We argue that this phase is generic for -2< N <2 when crossings of loops
are allowed, and distinct from the model of non-crossing dense loops first
studied by Nienhuis [Phys. Rev. Lett. 49, 1062 (1982)]. Our arguments are
supported by our numerical results, and by a lattice model solved exactly by
Martins et al. [Phys. Rev. Lett. 81, 504 (1998)].Comment: RevTeX, 5 pages, 3 postscript figure
Finite average lengths in critical loop models
A relation between the average length of loops and their free energy is
obtained for a variety of O(n)-type models on two-dimensional lattices, by
extending to finite temperatures a calculation due to Kast. We show that the
(number) averaged loop length L stays finite for all non-zero fugacities n, and
in particular it does not diverge upon entering the critical regime n -> 2+.
Fully packed loop (FPL) models with n=2 seem to obey the simple relation L = 3
L_min, where L_min is the smallest loop length allowed by the underlying
lattice. We demonstrate this analytically for the FPL model on the honeycomb
lattice and for the 4-state Potts model on the square lattice, and based on
numerical estimates obtained from a transfer matrix method we conjecture that
this is also true for the two-flavour FPL model on the square lattice. We
present in addition numerical results for the average loop length on the three
critical branches (compact, dense and dilute) of the O(n) model on the
honeycomb lattice, and discuss the limit n -> 0. Contact is made with the
predictions for the distribution of loop lengths obtained by conformal
invariance methods.Comment: 20 pages of LaTeX including 3 figure
Mechanical properties and formation mechanisms of a wire of single gold atoms
A scanning tunneling microscope (STM) supplemented with a force sensor is
used to study the mechanical properties of a novel metallic nanostructure: a
freely suspended chain of single gold atoms. We find that the bond strength of
the nanowire is about twice that of a bulk metallic bond. We perform ab initio
calculations of the force at chain fracture and compare quantitatively with
experimental measurements. The observed mechanical failure and nanoelastic
processes involved during atomic wire fabrication are investigated using
molecular dynamics (MD) simulations, and we find that the total effective
stiffness of the nanostructure is strongly affected by the detailed local
atomic arrangement at the chain bases.Comment: To be published in Phys. Rev. Lett. 4 pages with 3 figure
Simulations of energetic beam deposition: from picoseconds to seconds
We present a new method for simulating crystal growth by energetic beam
deposition. The method combines a Kinetic Monte-Carlo simulation for the
thermal surface diffusion with a small scale molecular dynamics simulation of
every single deposition event. We have implemented the method using the
effective medium theory as a model potential for the atomic interactions, and
present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to
35 eV. The method is capable of following the growth of several monolayers at
realistic growth rates of 1 monolayer per second, correctly accounting for both
energy-induced atomic mobility and thermal surface diffusion. We find that the
energy influences island and step densities and can induce layer-by-layer
growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag),
which correlates with where the net impact-induced downward interlayer
transport is at a maximum. A high step density is needed for energy induced
layer-by-layer growth, hence the effect dies away at increased temperatures,
where thermal surface diffusion reduces the step density. As part of the
development of the method, we present molecular dynamics simulations of single
atom-surface collisions on flat parts of the surface and near straight steps,
we identify microscopic mechanisms by which the energy influences the growth,
and we discuss the nature of the energy-induced atomic mobility
The spin temperature of high-redshift damped Lyman- systems
We report results from a programme aimed at investigating the temperature of
neutral gas in high-redshift damped Lyman- absorbers (DLAs). This
involved (1) HI 21cm absorption studies of a large DLA sample, (2) VLBI studies
to measure the low-frequency quasar core fractions, and (3) optical/ultraviolet
spectroscopy to determine DLA metallicities and velocity widths.
Including literature data, our sample consists of 37 DLAs with estimates of
the spin temperature and the covering factor. We find a strong )
difference between the distributions in high-z (z>2.4) and low-z (z<2.4)
DLA samples. The high-z sample contains more systems with high values,
K. The distributions in DLAs and the Galaxy are also
clearly (~) different, with more high- sightlines in DLAs than in
the Milky Way. The high values in the high-z DLAs of our sample arise due
to low fractions of the cold neutral medium.
For 29 DLAs with metallicity [Z/H] estimates, we confirm the presence of an
anti-correlation between and [Z/H], at significance via a
non-parametric Kendall-tau test. This result was obtained with the assumption
that the DLA covering factor is equal to the core fraction. Monte Carlo
simulations show that the significance of the result is only marginally
decreased if the covering factor and the core fraction are uncorrelated, or if
there is a random error in the inferred covering factor.
We also find evidence for redshift evolution in DLA values even for the
z>1 sub-sample. Since z>1 DLAs have angular diameter distances comparable to or
larger than those of the background quasars, they have similar efficiency in
covering the quasars. Low covering factors in high-z DLAs thus cannot account
for the observed redshift evolution in spin temperatures. (Abstract abridged.)Comment: 37 pages, 22 figures. Accepted for publication in Monthly Notices of
the Royal Astronomical Societ
Atomic-scale modeling of the deformation of nanocrystalline metals
Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display
technologically interesting properties, such as dramatically increased
hardness, increasing with decreasing grain size. Due to the small grain size,
direct atomic-scale simulations of plastic deformation of these materials are
possible, as such a polycrystalline system can be modeled with the
computational resources available today.
We present molecular dynamics simulations of nanocrystalline copper with
grain sizes up to 13 nm. Two different deformation mechanisms are active, one
is deformation through the motion of dislocations, the other is sliding in the
grain boundaries. At the grain sizes studied here the latter dominates, leading
to a softening as the grain size is reduced. This implies that there is an
``optimal'' grain size, where the hardness is maximal.
Since the grain boundaries participate actively in the deformation, it is
interesting to study the effects of introducing impurity atoms in the grain
boundaries. We study how silver atoms in the grain boundaries influence the
mechanical properties of nanocrystalline copper.Comment: 10 pages, LaTeX2e, PS figures and sty files included. To appear in
Mater. Res. Soc. Symp. Proc. vol 538 (invited paper). For related papers, see
http://www.fysik.dtu.dk/~schiotz/publist.htm
Refined conformal spectra in the dimer model
Working with Lieb's transfer matrix for the dimer model, we point out that
the full set of dimer configurations may be partitioned into disjoint subsets
(sectors) closed under the action of the transfer matrix. These sectors are
labelled by an integer or half-integer quantum number we call the variation
index. In the continuum scaling limit, each sector gives rise to a
representation of the Virasoro algebra. We determine the corresponding
conformal partition functions and their finitizations, and observe an
intriguing link to the Ramond and Neveu-Schwarz sectors of the critical dense
polymer model as described by a conformal field theory with central charge
c=-2.Comment: 44 page
Exponential martingales and changes of measure for counting processes
We give sufficient criteria for the Dol\'eans-Dade exponential of a
stochastic integral with respect to a counting process local martingale to be a
true martingale. The criteria are adapted particularly to the case of counting
processes and are sufficiently weak to be useful and verifiable, as we
illustrate by several examples. In particular, the criteria allow for the
construction of for example nonexplosive Hawkes processes as well as counting
processes with stochastic intensities depending on diffusion processes
Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents
In this article, an overview of the application of selected metal nitrides as ammonia synthesis catalysts is presented. The potential development of some systems into nitrogen transfer reagents is also described
The Generation of Successive Unmarked Mutations and Chromosomal Insertion of Heterologous Genes in Actinobacillus pleuropneumoniae Using Natural Transformation
We have developed a simple method of generating scarless, unmarked mutations in Actinobacillus pleuropneumoniae by exploiting the ability of this bacterium to undergo natural transformation, and with no need to introduce plasmids encoding recombinases or resolvases. This method involves two successive rounds of natural transformation using linear DNA: the first introduces a cassette carrying cat (which allows selection by chloramphenicol) and sacB (which allows counter-selection using sucrose) flanked by sequences to either side of the target gene; the second transformation utilises the flanking sequences ligated directly to each other in order to remove the cat-sacB cassette. In order to ensure efficient uptake of the target DNA during transformation, A. pleuropneumoniae uptake sequences are added into the constructs used in both rounds of transformation. This method can be used to generate multiple successive deletions and can also be used to introduce targeted point mutations or insertions of heterologous genes into the A. pleuropneumoniae chromosome for development of live attenuated vaccine strains. So far, we have applied this method to highly transformable isolates of serovars 8 (MIDG2331), which is the most prevalent in the UK, and 15 (HS143). By screening clinical isolates of other serovars, it should be possible to identify other amenable strains
- …