11,935 research outputs found
On the universality of compact polymers
Fully packed loop models on the square and the honeycomb lattice constitute
new classes of critical behaviour, distinct from those of the low-temperature
O(n) model. A simple symmetry argument suggests that such compact phases are
only possible when the underlying lattice is bipartite. Motivated by the hope
of identifying further compact universality classes we therefore study the
fully packed loop model on the square-octagon lattice. Surprisingly, this model
is only critical for loop weights n < 1.88, and its scaling limit coincides
with the dense phase of the O(n) model. For n=2 it is exactly equivalent to the
selfdual 9-state Potts model. These analytical predictions are confirmed by
numerical transfer matrix results. Our conclusions extend to a large class of
bipartite decorated lattices.Comment: 13 pages including 4 figure
A development of logistics management models for the Space Transportation System
A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support
Simulations of energetic beam deposition: from picoseconds to seconds
We present a new method for simulating crystal growth by energetic beam
deposition. The method combines a Kinetic Monte-Carlo simulation for the
thermal surface diffusion with a small scale molecular dynamics simulation of
every single deposition event. We have implemented the method using the
effective medium theory as a model potential for the atomic interactions, and
present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to
35 eV. The method is capable of following the growth of several monolayers at
realistic growth rates of 1 monolayer per second, correctly accounting for both
energy-induced atomic mobility and thermal surface diffusion. We find that the
energy influences island and step densities and can induce layer-by-layer
growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag),
which correlates with where the net impact-induced downward interlayer
transport is at a maximum. A high step density is needed for energy induced
layer-by-layer growth, hence the effect dies away at increased temperatures,
where thermal surface diffusion reduces the step density. As part of the
development of the method, we present molecular dynamics simulations of single
atom-surface collisions on flat parts of the surface and near straight steps,
we identify microscopic mechanisms by which the energy influences the growth,
and we discuss the nature of the energy-induced atomic mobility
Optimization methods and silicon solar cell numerical models
An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution
Inelastic Scattering in Metal-H2-Metal Junctions
We present first-principles calculations of the dI/dV characteristics of an
H2 molecule sandwiched between Au and Pt electrodes in the presence of
electron-phonon interactions. The conductance is found to decrease by a few
percentage at threshold voltages corresponding to the excitation energy of
longitudinal vibrations of the H2 molecule. In the case of Pt electrodes, the
transverse vibrations can mediate transport through otherwise non-transmitting
Pt -channels leading to an increase in the differential conductance even
though the hydrogen junction is characterized predominately by a single almost
fully open transport channel. In the case of Au, the transverse modes do not
affect the dI/dV because the Au d-states are too far below the Fermi level. A
simple explanation of the first-principles results is given using scattering
theory. Finally, we compare and discuss our results in relation to experimental
data.Comment: Accepted in Phys. Rev.
Oncologic Emergencies
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.It has been estimated that genitourinary malignancies will account for 25% of new cancer diagnoses in the United States in 2005 (Jemal et al. 2005). While the incidence of many of these malignancies has increased over the past two decades, the mortality rates appear to be decreasing. Early cancer detection combined with improvements in surgical and nonsurgical oncologic therapy account for these trends. Although not common, newly diagnosed cancer patients occasionally present in an emergent, life-threatening manner that warrants immediate medical or surgical intervention. As the prevalence of genitourinary malignancies continues to expand, additional patients can be expected to develop disease or treatment-related complications. This chapter will serve to review the diagnosis and management of oncologic emergencies as they pertain to the urologist
Dense loops, supersymmetry, and Goldstone phases in two dimensions
Loop models in two dimensions can be related to O(N) models. The
low-temperature dense-loops phase of such a model, or of its reformulation
using a supergroup as symmetry, can have a Goldstone broken-symmetry phase for
N<2. We argue that this phase is generic for -2< N <2 when crossings of loops
are allowed, and distinct from the model of non-crossing dense loops first
studied by Nienhuis [Phys. Rev. Lett. 49, 1062 (1982)]. Our arguments are
supported by our numerical results, and by a lattice model solved exactly by
Martins et al. [Phys. Rev. Lett. 81, 504 (1998)].Comment: RevTeX, 5 pages, 3 postscript figure
Theory of the optical conductivity of (TMTSF)PF in the mid-infrared range
We propose an explanation of the mid-infrared peak observed in the optical
conductivity of the Bechgaard salt (TMTSF)PF in terms of electronic
excitations. It is based on a numerical calculation of the conductivity of the
quarter-filled, dimerized Hubbard model. The main result is that, even for
intermediate values of for which the charge gap is known to be very
small, the first peak, and at the same time the main structure, of the optical
conductivity is at an energy of the order of the dimerization gap, like in the
infinite case. This surprising effect is a consequence of the optical
selection rules.Comment: 10 pages, 9 uuencoded figure
Studies on the Weak Itinerant Ferromagnet SrRuO3 under High Pressure to 34 GPa
The dependence of the Curie temperature Tc on nearly hydrostatic pressure has
been determined to 17.2 GPa for the weak itinerant ferromagnetic SrRuO3 in both
polycrystalline and single-crystalline form. Tc is found to decrease under
pressure from 162 K to 42.7 K at 17.2 GPa in nearly linear fashion at the rate
dTc/dP = -6.8 K/GPa. No superconductivity was found above 4 K in the pressure
range 17 to 34 GPa. Room-temperature X-ray diffraction studies to 25.3 GPa
reveal no structural phase transition but indicate that the average Ru-O-Ru
bond angle passes through a minimum near 15 GPa. The bulk modulus and its
pressure derivative were determined to be B =192(3) GPa and B' = 5.0(3),
respectively. Parallel ac susceptibility studies on polycrystalline CaRuO3 at 6
and 8 GPa pressure found no evidence for either ferromagnetism or
superconductivity above 4 K
- …